摘要:
The present invention provides a method for producing high-purity calcium, the method being characterized by the following: performing first sublimation purification by introducing calcium starting material having a purity, excluding the gas components, of 4N or less into a crucible of a sublimation vessel, subjecting the starting material to sublimation by heating at 750°C to 800°C, and causing the product to deposit (evaporate) onto the inside walls of the sublimation vessel; and then, once the calcium that has been subjected to first sublimation purification is recovered, performing second sublimation purification by introducing the recovered calcium again to the crucible to the sublimation vessel, heating the recovered calcium at 750°C to 800°C, and causing the product to similarly deposit (evaporate) on the inside walls of the sublimation vessel thereby recovering calcium having a purity of 4N5 or higher It is an object of the present invention to provide a technology with which calcium that has been brought to a high-purity can be obtained with stability to be used for the production of high-purity lanthanum, as well as to be used as a reducing agent for other rare earth elements, a desulfurizing or deoxidizing agent for metals, or a getter for high-vacuum pumps.
摘要:
The present invention provides a method for producing high-purity calcium, the method being characterized by the following: performing first sublimation purification by introducing calcium starting material having a purity, excluding the gas components, of 4N or less into a crucible of a sublimation vessel, subjecting the starting material to sublimation by heating at 750°C to 800°C, and causing the product to deposit (evaporate) onto the inside walls of the sublimation vessel; and then, once the calcium that has been subjected to first sublimation purification is recovered, performing second sublimation purification by introducing the recovered calcium again to the crucible to the sublimation vessel, heating the recovered calcium at 750°C to 800°C, and causing the product to similarly deposit (evaporate) on the inside walls of the sublimation vessel thereby recovering calcium having a purity of 4N5 or higher It is an object of the present invention to provide a technology with which calcium that has been brought to a high-purity can be obtained with stability to be used for the production of high-purity lanthanum, as well as to be used as a reducing agent for other rare earth elements, a desulfurizing or deoxidizing agent for metals, or a getter for high-vacuum pumps.
摘要:
In producing Ti or a Ti alloy through reduction by Ca, an electrolytic-bath salt taken out from a reduction process is electrolyzed to recover Ca and the electrolytic-bath salt as a solid substance, and the recovered Ca and electrolytic-bath salt are delivered to the reduction process. Therefore, heat generation is suppressed in the reduction process by utilizing latent heat of fusion possessed by the solid substance, thereby largely improving production efficiency and thermal efficiency. Additionally, a reaction temperature is easily controlled, and a raw-material loading rate can be enhanced to efficiently produce Ti or the Ti alloy. At this point, using a pulling electrolysis method of the invention, the solid-state Ca and electrolytic-bath salt can be obtained at a low voltage and high current efficiency, i.e., with the relatively small power consumption. When the solid-state Ca and electrolytic-bath salt is used as a Ca source in producing Ti or the Ti alloy through reduction by Ca, the Ti or Ti alloy can efficiently be produced.
摘要:
Compositions and methods for selectively binding metal ions from source solutions are disclosed. The compositions include 1) polyamide-containing ligands covalently bonded to a particulate solid support, and 2) polyamide-containing polymeric resins. In the case of the ligand bonded to the solid support, the ligand is bounded or tethered to the solid support through a hydrophilic spacer such that the overall formula is SS-A-X-L. In this formula, SS is a particulate solid support such as silica or a polymeric bead, A is a covalent linkage mechanism, X is a hydrophilic spacer grouping, and L is a polyamide-containing ligand having three or more amide groups and two or more amine nitrogens separated by at least two carbons with the proviso that when SS is a particulate organic polymer, A-X may be combined as a single covalent linkage. With respect to the polyamide ligand-containing polymeric resin, this composition is a reaction product of a hydroxymethylated polyamide ligand and a polymerization and/or crosslinking agent.
摘要:
The present invention relates to a method for handling particulate metal, comprising the following steps: 1a) Providing particulate metal to a pretreatment unit (1) at a first location, 1b) Pretreating the particulate metal in the pretreatment unit (1) with a pretreatment agent (2) to produce pretreated particulate metal, 2a) Transferring the pretreated particulate metal from the pretreatment unit to at least one transportation vessel (3), 2b) Transporting the pretreated particulate metal with the at least one transportation vessel (3) to a second location, 3a) Transferring the pretreated particulate metal at the second location to a treatment system (4), 3b) Processing the pretreated particulate metal in the treatment system (4).
摘要:
Submersible media filters and submersible columns for use in removing radioactive isotopes and other contaminants from a fluid stream, such as a fluid stream from the primary coolant loop of a nuclear reactor system or a fluid stream from a spent-fuel pool. Generally, these submersible media filters and submersible columns are adapted to be submersed in the fluid stream, and additionally the filters are adapted to be vitrified after use, resulting in a stabilized, non-leaching final waste product with a substantially reduced volume compared to the original filter. In several embodiments, the submersible media filters and submersible columns include isotope-specific media (ISM).
摘要:
Provided is a wastewater treatment process capable of selectively and efficiently separating and removing a manganese precipitate with high purity from sulfuric acid-acidic wastewater containing aluminum, magnesium, and manganese. In the wastewater treatment for a sulfuric acid-acidic wastewater containing aluminum, magnesium, and manganese, a magnesium oxide is used for part or all of the neutralizing agent to be added, the magnesium oxide is produced through the following steps (1) to (4): (1) effluent wastewater obtained by separating aluminum and manganese from sulfuric acid-acidic wastewater is concentrated, and calcium contained in the effluent wastewater is precipitated as a calcium sulfate; (2) the solution obtained in (1) is further concentrated, and magnesium is precipitated and separated as a magnesium sulfate; (3) the magnesium sulfate separated in (2) is roasted together with a reducing agent to obtain a magnesium oxide and sulfurous acid gas; and (4) the magnesium oxide obtained in (3) is washed.
摘要:
A method of mineralizing calcium from industrial waste comprising extracting calcium ions from a suspension of calcium rich granular particles and aqueous ammonium nitrate to form a calcium-rich first fraction and a heavy second fraction. The heavy second fraction is separated from the first fraction and the calcium-rich first fraction is carbonated with a gas comprising carbon dioxide to form a suspension of precipitated calcium carbonate and aqueous ammonium nitrate. The precipitate is separated from the aqueous ammonium nitrate by centrifugal means and the separated heavy second fraction comprises an enriched weight percent of iron.