摘要:
Disclosed herein are systems and methods for mitigating the risk of insulin stacking in automated insulin delivery systems. In AID systems configured to both automatically calculate insulin delivery based on glucose levels and receive manual programming of meal boluses configured to counteract carbohydrates in a meal, insulin stacking can result if the system automatically increases insulin delivery based on a rise in glucose levels in response to consumption of a meal and the user later programs a meal bolus for the meal. The risk of such double dosing is mitigated by the systems and methods disclosed herein by enabling the system to account for recent automated insulin increases when a meal bolus is programmed.
摘要:
Disclosed herein are apparatuses and methods that account for exercise in closed loop insulin delivery systems. Rather than increasing a target insulin on board (IOB) as glucose levels rise, which would increase insulin delivery to address the raised glucose levels, when a user indicates that the user will be exercising raised glucose levels are addressed by reducing the target IOB within the closed loop algorithm. By reducing the target IOB, the algorithm responds less aggressively to pre-exercise food, and does not build up the IOB that can cause dangerously low glucose levels once the exercise also begins lowering glucose levels.
摘要:
A patch pump utilizes piezoelectricity to dispense medicament from a cartridge syringe to a patient. Pump can include a plurality of piezoelectric elements that when energized cause linear motion of a pushrod that interfaces with the syringe in the cartridge to advance the syringe and dispense the medicament. The high torque generated by the piezoelectric elements is directly converted into the same amount of torque on the lead screw, so no torque increasing gear reduction system is needed and the pushrod utilized to drive the syringe can be contained within and connected directly to the motor assembly. Such a piezoelectric-based system can therefore be made smaller and with fewer moving parts than an electromagnetic motor of the same capability such that the pump has a smaller size than has heretofore been possible with prior art electromagnetic-based syringe pumps and other pumps that utilize gear reduction systems.
摘要:
A portable insulin pump can integrate and display data from a continuous glucose monitor (CGM) to allow a user to more readily determine whether any interaction with the pump is necessary. Data from the CGM can automatically be transmitted to the pump and can be displayed for user analysis or automatically analyzed to present recommendations to the user based on combined data from the CGM and the pump.
摘要:
A portable medical device includes an interface for accepting a power supply and enabling data transfer while still connected to a human body. The interface may include a universal serial bus interface and may be coupled to a data isolation chip and a power isolation chip. A power controlling processor may determine how the supplied power, e.g., voltage, is supplied to other components within the infusion device. Additional circuitry within the system may provide a secure power transfer within the device to ensure user safety and ensure that a high frequency noise is properly attenuated.
摘要:
A portable medical device is operated in an active mode in which the device receives a user input at an input interlace and provides the received user input to a processor of the device. The active mode is terminated and the device is operated in a safe mode, in which the received user input is not provided to the processor and/or one or more device function is disabled, in response to determining that the received user input was received in an out of bounds region of the input interface. The safe mode is terminated in response to receiving a predetermined user input comprising an activation input.
摘要:
The application is directed to portable infusion system that may be used e.g. for infusing a material such as medicament e.g. insulin into a body in need thereof, said system comprises a delivery mechanism (132) including a bore (144) within a pump body (236) of the delivery mechanism, a spool (156) slidingly disposed in the bore forming a collapsible first volume (244) which is configured to communicate with a reservoir inlet port (138) and dispense port (142) of the bore independent of the reservoir inlet port, and a vent second volume (246) isolated from the collapsible first volume, the vent second volume configured to be moveable between a position that allows the vent inlet port (146) to communicate with a vent outlet port (148) and a position where the vent inlet port and vent outlet port are isolated from each other.