Abstract:
A data readout device (114) for reading out data from at least one data carrier (112) having data modules (116) located at least two different depths within the at least one data carrier (112) is disclosed. The data readout device (114) comprises: -at least one illumination source (122) for directing at least one light beam (124) onto the data carrier (112); -at least one detector (130) adapted for detecting at least one modified light beam modified by at least one of the data modules (116), the detector (130) having at least one optical sensor (132), wherein the optical sensor (132)has at least one sensor region (134), wherein the optical sensor (132)is designed to generate at least one sensor signal in a manner dependent on an illumination of the sensor region (134)by the modified light beam, wherein the sensor signal, given the same total power of the illumination,is dependent on a beam cross-section of the modified light beam in the sensor region (134); and -at least one evaluation device (136) adapted for evaluating the at least one sensor signal and for deriving data stored in the at least one data carrier (112) from the sensor signal. Further, a data storage system (110), a method for reading out data from at least one data carrier (112) and a use of an optical sensor (132) for reading out data are disclosed.
Abstract:
An optical detector (110) is disclosed, the optical detector (110) comprising: at least one spatial light modulator (114) being adapted to modify at least one property of a light beam (136) in a spatially resolved fashion, having a matrix (132) of pixels (134), each pixel (134) being controllable to individually modify the at least one optical property of a portion of the light beam (136) passing the pixel (134); at least one optical sensor (116) adapted to detect the light beam (136) after passing the matrix (132) of pixels (134) of the spatial light modulator (114) and to generate at least one sensor signal; at least one modulator device (118) adapted for periodically controlling at least two of the pixels (134) with different modulation frequencies; and at least one evaluation device (120) adapted for performing a frequency analysis in order to determine signal components of the sensor signal for the modulation frequencies.
Abstract:
A detector (110) for determining a position of at least one object (112) is proposed. The detector (110) comprises: at least one transversal optical sensor (130), the transversal optical sensor (130) being adapted to determine a transversal position of at least one light beam (138) traveling from the object (112) to the detector (110), the transversal position being a position in at least one dimension perpendicular to an optical axis (116) of the detector (110), the transversal optical sensor (130) being adapted to generate at least one transversal sensor signal; at least one longitudinal optical sensor (132), wherein the longitudinal optical sensor (132) has at least one sensor region (136), wherein the longitudinal optical sensor (132) is designed to generate at least one longitudinal sensor signal in a manner dependent on an illumination of the sensor region (136) by the light beam (138), wherein the longitudinal sensor signal, given the same total power of the illumination, is dependent on a beam cross-section of the light beam (138) in the sensor region (136); at least one evaluation device (142), wherein the evaluation device (142) is designed to generate at least one item of information on a transversal position of the object (112) by evaluating the transversal sensor signal and to generate at least one item of information on a longitudinal position of the object (112) by evaluating the longitudinal sensor signal.
Abstract:
A detector (110) for optically detecting at least one object (112) is proposed. The detector (110) comprises at least one optical sensor (114). The optical sensor (114) has at least one sensor region (116). The optical sensor (114) is designed to generate at least one sensor signal in a manner dependent on an illumination of the sensor region (116). The sensor signal, given the same total power of the illumination, is dependent on a geometry of the illumination, in particular on a beam cross section of the illumination on the sensor area (118). The detector (110) furthermore has at least one evaluation device (122). The evaluation device (122) is designed to generate at least one item of geometrical information from the sensor signal, in particular at least one item of geometrical information about the illumination and/or the object (112).
Abstract:
A process for marking articles, wherein the article to be marked is contacted with at least one marker and the absorption spectrum of the at least one marker in contact with the article has at least one narrow band with a half-height width of