Abstract:
The present invention is a process to remove a major portion of metals and coke precursors from a hydrocarbon stream. The steps of the process include contacting the feedstream with a hydrocarbon insoluble adsorbent, recovering the oil which does not adsorb and removing the metals and coke precursors from the adsorbent.
Abstract:
Described herein is a catalyst precursor composition comprising at least one metal from Group 6 of the Periodic Table of the Elements, at least one metal from Groups 8-10 of the Periodic Table of the Elements, and a reaction product formed from (i) a first organic compound containing at least one amine group and at least 10 carbon atoms or (ii) a second organic compound containing at least one carboxylic acid group and at least 10 carbon atoms, but not both, wherein the reaction product contains additional unsaturated carbon atoms, relative to the first or second organic compound, wherein the metals of the catalyst precursor composition are arranged in a crystal lattice, and wherein the reaction product is not located within the crystal lattice. A process for preparing the catalyst precursor composition is also described, as is sulfiding the catalyst precursor composition to form a hydroprocessing catalyst.
Abstract:
Described herein is a catalyst precursor composition comprising at least one metal from Group 6 of the Periodic Table of the Elements, at least one metal from Groups 8-10 of the Periodic Table of the Elements, and a reaction product formed from (i) a first organic compound containing at least one amine group and at least 10 carbon atoms or (ii) a second organic compound containing at least one carboxylic acid group and at least 10 carbon atoms, but not both, wherein the reaction product contains additional unsaturated carbon atoms, relative to the first or second organic compound, wherein the metals of the catalyst precursor composition are arranged in a crystal lattice, and wherein the reaction product is not located within the crystal lattice. A process for preparing the catalyst precursor composition is also described, as is sulfiding the catalyst precursor composition to form a hydroprocessing catalyst.
Abstract:
The instant invention relates to a process to produce liquid products through the hydroprocessing of hydrocarbonaceous feedstreams in the presence of a bulk metal hydroprocessing catalyst.
Abstract:
Naphtha is selectively hydrodesulfurized with retention of olefin content. More particularly, a CoMo metal hydrogenation component is loaded on a silica or modified silica support in the presence of an organic additive to produce a catalyst which is then used for hydrodesulfurizing naphtha while retaining olefins.
Abstract:
The invention relates to a process for upgrading hydrocarbonaceous feedstreams by hydroprocessing using bulk bimetallic catalysts. More particularly, the invention relates to a catalytic hydrotreating process for the removal of sulfur and nitrogen from a hydrocarbon feed such as a fuel or a lubricating oil feed. The catalyst is a bulk catalyst containing at leas one Group VIII metal and at least one Group VIB metal. The catalyst is prepared hydrothermally.
Abstract:
Hydrofining of petroleum and chemical feedstocks using bulk Group VIII/Group VIB catalysts. Preferred catalysts include those comprised of Ni-Mo-W.
Abstract:
A slurry hydroprocessing process for upgrading a hydrocarbon feedstock containing nitrogen and sulfur using bulk multimetallic catalyst comprised of at least one Group VIII non-noble metal and at least two Group VIB metals wherein the ratio of Group VIB metal to Group VIII metal is about 10:1 to about 1:10.
Abstract:
The present invention is directed to processes for preparing supported metal catalysts comprising one or more catalytically active metals applied to a porous catalyst support and to processes that use such catalysts. The process requires the formation of an organic complex during the manufacture of the catalyst which after its formation is either partially or fully decomposed before reduction if the metal to form the catalyst. The catalysts have high levels of metal dispersion and uniform distribution of catalytically active metals on the support. The catalysts obtained form the processes are particularly effective in catalysing Fischer-Tropsch reactions and as adsorbants for the removal or organosulfur compounds from hydrocarbons.