摘要:
Two-dimensional or three-dimensional, time-resolved CT frame images are acquired during a dynamic study of a subject. A composite image is produced and this is used to reconstruct each CT frame image by weighting the backprojection of each projection view acquired for that image frame by the corresponding value in the composite image. This weighted backprojection enables artifact-free image frames to be produced with far fewer projection views of the subject. The composite image may be reconstructed from views acquired separately, or it may be produced by combining views acquired during the course of the dynamic study.
摘要:
A dynamic MRA study is performed using a 3D fast gradient recalled echo pulse sequence. A signal strength indicator for each acquired k-space data set is calculated from the k-space raw data and these indicator values are employed to produce a contrast curve. This contract curve is used to select data for use in forming a CONTRAST k-space data set and a MASK k-space data set. The MASK is subtracted from the CONTRAST data set and the result is used to reconstruct an image.
摘要:
A dynamic MRA study of a subject is performed using a 3D fast gradient-recalled echo pulse sequence. The frame rate of the resulting series of reconstructed images is increased by sampling a central region of k-space at a higher rate than the peripheral regions of k-space. Artifacts caused by variations in signal strength as the contrast agent enters the region of interest are reduced by renormalizing the acquired data. 2D image frames are reconstructed using planes passing near the center of k-space to enable the operator to select which 3D data sets should be used to reconstruct diagnostic images.
摘要:
A generalized projection-slice theorem for divergent beam projections is disclosed. The theorem results in a method for processing the Fourier transform of the divergent beam projections at each view acquired by a CT system to the Fourier transform of the object function. Using this method, an inverse Fourier transform may be used to reconstruct tomographic images from the acquired divergent beam projections.
摘要:
A dynamic MRA study is performed using a 3D fast gradient recalled echo pulse sequence. A signal strength indicator for each acquired k-space data set is calculated from the k-space raw data and these indicator values are employed to produce a contrast curve. This contract curve is used to select data for use in forming a CONTRAST k-space data set and a MASK k-space data set. The MASK is subtracted from the CONTRAST data set and the result is used to reconstruct an image.
摘要:
X-ray compensation masks (51) are prepared by exposing an X-ray target object (43), such as a patient, to a first beam of X-rays. The X-ray fluence from the patient is received by an electronic image receptor (44) which provides an output signal indicating the intensity of the X-rays at all positions in the image field. The image information is converted by an image processor (47) to transformed X-ray intensity values for a plurality of pixels which cover the image field. A mask generating controller (48) determines the minimum transformed intensity value for any pixel, assigns to each pixel an attenuation number which is proportional to the difference between the transformed intensity value for the pixel and the minimum transformed intensity value, and issues control signals to a mask former (49) which deposits on a non-attenuating substrate (50) attenuating masses in a two dimensional array of pixels with the mass thickness in each pixel proportional to the attenuation number. When the mask (51) is inserted into the beam from the X-ray source (41), and a second exposure taken, the X-ray fluence passing through both the attenuating mask (51) and the patient (43) will be substantially equalized across the image field.
摘要:
Two-dimensional or three-dimensional, time-resolved CT frame images are acquired during a dynamic study of a subject. A composite image is produced and this is used to reconstruct each CT frame image by weighting the backprojection of each projection view acquired for that image frame by the corresponding value in the composite image. This weighted backprojection enables artifact-free image frames to be produced with far fewer projection views of the subject. The composite image may be reconstructed from views acquired separately, or it may be produced by combining views acquired during the course of the dynamic study.