摘要:
A two-dimensional optimization between adaptive modulation and coding (AMC) and multi-code transmission targets the best bit rate at which a highest useable modulation and coding scheme (MCS) achieves a maximum allowed number of channelization codes or less. The optimized MCS and number of channelization codes at a best bit rate is communicated from a transmitter to a receiver, possibly also with power information for instance using a transport format combination indicator (TFCI). A user equipment may play the role of carrying out the optimization and signaling the result to the Node B or may instead receive the result as carried out by the Node B or RNC in response to a radio link quality measurement sent from the UE to the Node B.
摘要翻译:自适应调制和编码(AMC)和多码传输之间的二维优化目标是最高可用调制和编码方案(MCS)达到最大允许数量的信道化码或更少的最佳比特率。 以最佳比特率的优化的MCS和信道化码的数量也可以通过例如使用传输格式组合指示符(TFCI)的功率信息从发射机传送到接收机。 用户设备可以起到进行优化的作用,并将结果发送给节点B,或者可以接收由节点B或RNC响应于从UE发送到节点的无线电链路质量测量而执行的结果 B.
摘要:
Provided is a communication system that can synchronize a transmission status of data between a PDCP layer and an RLC layer. A communication system according to the present invention includes a PDCP control base station (10) configured to execute a process in a PDCP layer, and an RLC control base station (20) configured to execute a process in an RLC layer on data transmitted by the PDCP control base station (10) and transmit the data on which the process in the RLC layer has been executed to a mobile station (30). The RLC control base station (20) transmits a response message to the PDCP control base station (10) when the data has been successfully transmitted to the mobile station (30). When the PDCP control base station (10) receives the response message, the PDCP control base station (10) transmits data to be transmitted next to the RLC control base station (20).
摘要:
Briefly, the invention concerns the issue of supporting link adaptation in a wireless network, and basically involves implicit signaling for link adaptation based on transfer of transmit duration information. More particularly, a designated originating node sends (S1) a first message, including an indication of a current transmit duration for transfer of a predetermined amount of information, to at least a designated receiving node. The current transmit duration corresponds to a currently assumed data link rate. The designated receiving node selects (S2) a desired data link rate for subsequent communication from the originating node, and then determines (S3) an updated transmit duration according to the selected data link rate. The receiving node sends (S4) a second message, including an indication of the updated transmit duration, to at least the designated originating node, and the originating node then determines (S5) an updated data link rate in response to the updated transmit duration. In particular, the transmit duration information may preferably be transferred in the existing duration field in the frames of contention-based network protocols with support for virtual carrier sensing.
摘要:
A power-saving robot system (100) includes at least one peripheral device (102) to be placed in an environment with a mobile robot (104). The peripheral device has a controller (1026) with an active mode (938) in which the peripheral device is fully operative, and a hibernation mode (932) in which the peripheral device is at least partly inactive. The mobile robot (104) has a controller (1046) with an activating routine (904) that communicates with the peripheral device (102) via wireless communication components (1024, 1044) and temporarily activates the peripheral device (102) from the hibernation mode (932) when the wireless communication components (1024, 1044) of the peripheral device (102) and the robot (104) come within range of one another.
摘要:
In a wireless communication system including a wireless transmit/receive unit (WTRU) and at least one Node-B, a method and apparatus is used to selectively enable reception of at least one downlink (DL) enhanced uplink (EU) signaling channel established between the WTRU and the Node-B(s). During the operation of an enhanced dedicated channel (E-DCH), the WTRU monitors at least one DL EU signaling channel established between the WTRU and the Node-B(s) only when it is necessary, based on the WTRU's knowledge of at least one established standard procedure. The WTRU coordinates and consolidates DL signaling channel reception requirements of a plurality of channel allocation and/or data transmission procedures carried out by the WTRU in accordance with the established standard procedure. The WTRU determines whether to enable reception of at least one specific DL signaling channel based on the consolidated DL signaling channel reception requirements.
摘要:
Acknowledgment bundling has been defined for Long Term Evolution (LTE) Time Division Duplex (TDD) systems due to asymmetric DL/UL partitioning. In the case of Frequency Division Duplex (FDD) with a limited uplink (UL) duty cycle, there may be asymmetry associated with a downlink transmission and an associated uplink acknowledgment. For example, there may be a physical downlink shared channel (PDSCH) and a physical uplink control channel (PUCCH) hybrid automatic repeat request acknowledgment (HARQ-ACK) asymmetry. Interference between downlink and uplink transmissions may be a factor contributing to the limited UL duty cycle in an FDD system. For an FDD system having a limited mobile transmission duty cycle, both DL and UL performance may be significantly degraded without proper mitigation techniques. According to certain embodiments of the present disclosure, various HARQ and scheduling techniques may be utilized for minimizing loss due to the limited UL duty cycle.
摘要:
Disclosed are a method and an apparatus for transmitting and receiving data. A method for transmitting an uplink comprises the steps of: a terminal determining the size of an ACK/NACK payload according to a transmission mode of a first serving cell and a transmission mode of a second serving cell; the terminal establishing a transmission power for transmitting the ACK/NACK payload based on the size of the ACK/NACK payload; and the terminal transmitting the ACK/NACK payload through a physical uplink control channel (PUCCH) based on the transmission power.