摘要:
Biologically active compounds are provided that can be used as photosensitizers for diagnostic and therapeutic applications, particularly for PDT of cancer, infections and other hyperproliferative diseases, fluorescence diagnosis and PDT treatment of a non-tumorous indication such as arthritis, inflammatory diseases, viral or bacterial infections, dermatological, ophthalmological or urological disorders as well as providing methods to obtain them in pharmaceutical quality. One embodiment consists of a method to synthesize a porphyrin with a defined arrangement of meso-substituents and then converting this porphyrin system to a chlorin system by dihydroxylation or reduction, and if more than one isomer is formed separate them by chromatography either on normal or reversed phase silica. In another embodiment the substituents on the porphyrin are selected to direct the reduction or dihydroxylation to the chlorin so that a certain isomer is selectively formed. Another embodiment is to provide amphiphilic compounds with a higher membrane affinity and increased PDT-efficacy. In another embodiment a method to reductively cleave the osmate(VI)ester avoiding the use of gaseous H2S is provided. In another embodiment substituents are identified that via their steric and/or electronic influence direct the dihydroxylation or reduction with diimine so that one isomer is favored. Another embodiment consists of formulate the desired isomer into a liposomal formulation to be injected avoiding undesirable effects like solubility problems or delayed pharmacokinetics of the tetrapyrrole systems.
摘要:
Highly flexible penetrating liposomal carrier systems are formulated with enhanced skin penetration properties. These specialized formulations of highly flexible penetrating liposomal delivery systems comprise one or more phospholipids, lysophosphatides and hydrophobic photosensitizer. This new formulations can squeeze liposomal particles through intercellular regions of stratum corneum as intact structures, and, in this way, deliver encapsulated photosensitizer to the epidermis, dermis, hypodermis and surroundings. The penetrating liposomal formulation provides therapeutically effective amounts of the hydrophobic photosensitizer through topical application with better skin penetration thus improving drug targeting and the efficacy of photodynamic therapy (PDT).
摘要:
Medical systems, comprising at least one eletromagnetic radiation emitting device for medical applications, at least one mobile electronic device, and at least one attachable/detachable transmission medium, are provided. The electromagnetic radiation emitting device comprises a radiation source such as a laser source, a radiofrequency source, or a microwave source and required safety features/controls. The mobile electronic device has advanced computing capability and connectivity, and is capable of wirelessly accessing a network, such as a smart phone, a tablet personal computer, and the like. The transmission mediums are optical fibers, handpieces, fiber-optic systems, radiofrequency catheters and electrodes, microwave transmission media, having differently shaped distal tips, differently shaped support tubes, and lens assemblies with different focal distances. This makes the system versatile, as it can be easily adapted to a large number of diverse medical applications.
摘要:
Biologically active compounds that can be used as photosensitizers for diagnostic and therapeutic applications, particularly for PDT of cancer, infections and other hyperproliferative diseases, fluorescence diagnosis and PDT treatment of a non-tumorous indication such as arthritis, inflammatory diseases, viral or bacterial infections, dermatological, opthamological or urological disorders are provided as well as providing methods to obtain them in pharmaceutical quality. One embodiment consists of a method to synthesize a porphyrin with a defined arrangement of meso-substituents and then converting this porphyrin system to a chlorin system by dihydroxylation or reduction, and if more than one isomer is formed separate them by chromatography either on normal or reversed phase silica. In another embodiment the substituents on the porphyrin are selected to direct the reduction or dihydroxylation to the chlorin so that a certain isomer is selectively formed. Another embodiment is to provide amphiphilic compounds with a higher membrane affinity and increased PDT-efficacy. In other embodiments the nucleophilic substitution on pentafluorophenyl-substituted tetrapyrroles is used to obtain compounds with a high PDT-efficacy. In another embodiment substituents are identified that via their steric and/or electronic influence direct the dihydroxylation or reduction with diimine so that one isomer is favored. Another embodiment consists of formulating the desired tetrapyrrole photosensitizer into a pharmaceutical formulation to be injected into the body avoiding undesirable effects like solubility problems or delayed pharmacokinetics of the tetrapyrrole systems.