Abstract:
This invention provides a novel method and apparatus which use a wavelength-dispersing means such as a diffraction grating to spatially separate a multi-wavelength optical signal along with a reference signal by wavelength into multiple spectral channels and a reference spectral component in a spectral array with a predetermined relative alignment. By aligning the reference spectral component at a predetermined location, the spectral channels simultaneously impinge onto designated locations, e.g., on an array of beam-receiving elements positioned in accordance with the spectral array. The reference spectral component may be further maintained at the predetermined location by way of servo-control, thereby ensuring that the spectral channels stay aligned at the designated locations. The present invention can be used to construct a new line of servo-based optical systems, including spectral power monitors and optical multiplexers/demultiplexers, for WDM optical networking applications.
Abstract:
A method and an apparatus for delaying parts of a coherent optical signal beam relative to each other, comprising: a first device (104) for splitting the beam into a first part and a second part, a second device (108) for delaying the second part relative to the first part, a third device (106) for recombining the first and the second part, a fourth device (104,106) for providing the recombined parts with different polarizations.
Abstract:
A method and apparatus for measurement of the brightness, flow velocity and temperature of radiant media. A substantially collimated beam (3) of light is directed to a linear polarizer (5) through an interference filter (4). An electro-optically active birefringent crystal (7) separates the linearly polarized output of the polarizer (5) into two characteristic waves and introduces a final phase delay between the wave. The birefringent crystal (7) is electro-optically modulated to introduce a variable phase delay between the characteristic waves. The resultant characteristic waves are combined to interfere and the combination is sampled to produce a signal from which the emission moment of the radiant media can be determined.
Abstract:
Das Polarisationsinterferometer weist eine Lichtquelle (1), einen Kollimator (2), ein erstes polarisierendes Element (3), ein System von doppelbrechenden Elementen (4,5,6) und ein zweites polarisierendes Element (7) auf, welches das aus dem doppelbrechenden Element (4,5,6) austretende Licht polarisiert und einem Photonendetektor (8) zuführt. Das doppelbrechende Element (4,5,6) besteht dabei aus zwei, längs entgegengesetzter Seitenflächen gegeneinander verschiebbar angeordneten, sich zu einem Quader ergänzenden, optischen Keile (5,6) und einer als Kompensator dienenden doppelbrechenden planparallelen Platte (4). Die optische Achse des Kompensators (4) ist gegenüber derjenigen der beiden Keile (5,6) in der Ebene senkrecht zum Lichtstrahl um einen endlichen Winkel verdreht, wobei die optischen Achsen der beiden Keile (5,6) übereinstimmen. Die optischen Achsen der beiden Polarisatoren (3,7) stehen senkrecht oder parallel zueinander und sind nicht parallel zu den Achsen der beiden Keile (5,6) des doppelbrechenden Elementes (4,5,6) ausgerichtet. Ein monochromatischer Lichtstrahl (9) wird in den von der Lichtquelle (1) erzeugten parallen Lichtstrahl eingekoppelt und nach Durchquerung mindestens des doppelbrechenden Elementes (4,5,6) wieder ausgekoppelt und auf einen Photonendetektor (13) geführt.