摘要:
It is an objective of the present invention to provide a precipitation-hardening martensitic stainless steel having well-balanced properties of high mechanical strength, high toughness and good corrosion resistance properties. There is provided a precipitation-hardening martensitic stainless steel comprising: 0.10 mass% or less of C; 13.0 to 15.0 mass% of Cr; 7.0 to 10.0 mass% of Ni; 2.0 to 3.0 mass% of Mo; 0.5 to 2.5 mass% of Ti; 0.5 to 2.5 mass% of Al; 0.5 mass% or less of Si; 0.1 to 1.0 mass% of Mn; and the balance including Fe and incidental impurities, in which the mass% content of the Ti (represented by [Ti content]), the mass% content of the Al (represented by [Al content]) and the mass% content of the C (represented by [C content]) satisfy relationships of "0.5 ≤ [Ti content] ≤ 2.5" and "0.5 ≤ [Al content] + 2[C content] ≤ 2.7".
摘要:
This invention provides a high strength galvanized steel sheet having a low YP, a high BH, excellent anti-aging properties, and excellent corrosion resistance without requiring the addition of a large amount of expensive elements, such as Mo or Cr, or a special CGL heat history and a method for manufacturing the same. The high strength galvanized steel sheet contains C: more than 0.015% and lower than 0.100%, Si: 0.3% or lower, Mn: lower than 1.90%, P: 0.015% or more and 0.05% or lower, S: 0.03% or lower, sol.Al: 0.01% or more and 0.5% or lower, N: 0.005% or lower, Cr: lower than 0.30%, B: 0.0003% or more and 0.005% or lower, and Ti: lower than 0.014% in terms of mass%, and satisfies 2.2 ≤ [Mneq] ≤ 3.1 and 0.42 ≤ 8[%P] + 150B* ≤ 0.73. The steel microstructure contains ferrite and a second phase, in which the second phase area ratio is 3 to 15%, the ratio of the area ratio of martensite and retained γ to the second phase area ratio is more than 70%, and 50% or more of the area ratio of the second phase exists in the grain boundary triple point.
摘要:
A high-strength steel sheet having good ductility and stretch-flangeability and having a tensile strength (TS) of 980 MPa or more is provided. The steel sheet contains 0.17%-0.73% C, 3.0% or less Si, 0.5%-3.0% Mn, 0.1% or less P, 0.07% or less S, 3.0% or less Al, and 0.010% or less N, in which Si + Al is 0.7% or more, and in which the proportion of the area of martensite is in the range of 10% to 90% with respect to all microstructures of the steel sheet, the retained austenite content is in the range of 5% to 50%, the proportion of the area of bainitic ferrite in upper bainite is 5% or more with respect to all microstructures of the steel sheet, 25% or more of the martensite is tempered martensite, the sum of the proportion of the area of martensite with respect to all microstructures of the steel sheet, the retained austenite content, and the proportion of the area of bainitic ferrite in upper bainite with respect to all microstructures of the steel sheet satisfies 65% or more, the proportion of the area of polygonal ferrite with respect to all microstructures of the steel sheet satisfies 10% or less (including 0%), and the average C content of retained austenite is 0.70% or more.
摘要:
An iron-based soft magnetic alloy which is for use in various transformers, various choke coils, noise suppression measures, power supply parts, laser power supplies, pulsed-power magnetic parts for accelerators, various motors, various generators, magnetic shields, antennas, sensors, etc.; a thin ribbon of an amorphous alloy for producing the magnetic alloy; and a magnetic part comprising the magnetic alloy. The magnetic alloy comprises, in terms of at.%, copper in an amount (x) satisfying 0.1 ≤ x ≤ 3, boron in an amount (y) satisfying 10 ≤ y ≤ 20, and iron and impurities as the remainder. It contains, in terms of mass%, the following impurities: up to 0.01% aluminum, 0.001-0.05% sulfur, 0.01-0.5% manganese, 0.001-0.1% nitrogen, and up to 0.1% oxygen. The magnetic alloy has a structure at least part of which comprises a crystal phase having a crystal grain diameter of 60 nm or smaller (excluding 0).
摘要:
Compared to conventional steel products, polyphase steels have a significantly improved combination of resistance and ductility and are therefore becoming more and more important - especially for the automobile industry. The currently most important steel groups for the automobile industry are dual phase steels and TRIP steels. The production of different polyphase steel resistance categories, carried out directly on a hot strip, for meeting various requirements, requires a highly extensive know-how and firstly a corresponding adaptation of the alloy elements. According to the invention, a heat treatment (30) with a variable heating temperature and heating duration is carried out following the actual production of polyphase steels with a standard analysis and a standard process execution, whereby almost any combination of different materials or combination of properties (height of yield stress, level of tensile strength) can be adjusted.
摘要:
Disclosed is an efficient heat treatment method which can be performed in a short time. Specifically disclosed is a method for heat-treating a steel material wherein a plastically deformed steel work is introduced into a heat treatment furnace when the work still retains the heat applied thereto during the plastic deformation, then the work is heated, preferably at a heating rate of 15 to 50°C/min, and held at a temperature between Ac1 and Ac3 for 10 minutes or less, and then the work is slowly cooled at a cooling rate of 5 to 45°C/min. This heat treatment method enables to easily produce a steel material having a uniform metal structure by simple facilities.
摘要:
In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided (100), and a molten alloy is formed (102) over the first metallic glass steel substrate (100) to heat and devitrify at least some of the underlying metallic glass (108) of the substrate.