摘要:
An iron-based powder for powder metallurgy includes an iron-based powder and a composite oxide powder, and the composite oxide contains, by mass, from 15% to 30% Si, from 9% to 18% Al, from 3% to 6% B, from 0.5% to 3% Mg, from 2% to 6% Ca, from 0.01% to 1% Sr, and from 45% to 55% O.
摘要:
Metal matrix composites are disclosed that have a low coefficient of thermal expansion and low density. The composite includes a matrix formed from a low CTE metal alloy in which micron-scale ceramic particles are homogeneously dispersed therein. Methods for producing such composites are also disclosed. The composites also have improved yield strength and specific modulus.
摘要:
In a method for manufacturing a component containing an iron alloy material, a pulverulent pre-alloy is provided. The pre-alloy comprises, in wt.%, 0.01 to 1 % C, .0.01 to 30 % Mn, ≤ 6 % Al, and 0.05 to 6.0 % Si, the remainder being Fe and usual contaminants. The pulverulent pre-alloy is mixed with at least one of elementary Ag powder, elementary Au powder, elementary Pd powder and elementary Pt powder so as to produce a powder mixture containing 0.1 to 20% of at least one of Ag, Au, Pd and Pt. The powder mixture is applied onto a carrier (16) by means of a powder application device (14). Electromagnetic or particle radiation is selectively irradiated onto the powder mixture applied onto the carrier (16) by means of an irradiation device (18) so as to generate a component from the powder mixture by an additive layer construction method.
摘要:
A method for the manufacture of a composite fragmenting material having exothermic properties includes the steps of packing a mold with preformed metal fragments; filling interstitial spaces surrounding the metal fragments with a reactive metal powder to form a mixture; and then sintering the mixture at a temperature effective to both coat the metal fragments with the reactive metal powder and to bond the metal fragments together. In one embodiment the composite fragmenting material is formed into a nosecone for a warhead.
摘要:
An iron-base sintered alloy material includes a matrix phase, Co base inter-metallic compound particles having hardness of 600 to 1200 HV, carbide-type particles having hardness of 400 to 700 HV, and optionally solid-lubricant particles, the particles being dispersed in the matrix phase. A matrix part including the matrix phase and the two kinds of hard-particles contains 0.3 to 1.5% by mass of C, and 10 to 50% by mass of one or more kinds selected from Si, Mo, Cr, Ni, Co, Mn, S, W, V, Ca, F, Mg, and O, the balance being Fe and unavoidable impurities. By dispersing, in the matrix phase, the Co base inter-metallic compound particles having high hardness, and the carbide-type particles having low hardness and low aggressiveness to mated material and increasing mechanical strength, wear-resistance can be improved with low aggressiveness to mated material and high radial crushing strength (350 MPa or more).
摘要:
A material which can be used to manufacture components which exhibit high strength and high wear resistance, at the same time possessing reasonable ductility. The material also has cost advantages compared to other potential metal powder solutions. An iron based powder composition which achieves desired microstructure/properties and associated sliding wear resistance with reduced content of expensive alloying ingredients such as admixed elemental Ni and Copper.
摘要:
The present invention concerns a composite iron- based powder mix suitable for soft magnetic applications such as inductor cores. The present invention also concerns a method for producing a soft magnetic component and the component produced by the method.