Abstract:
Modular pumpouts and flowline architecture are described. An example apparatus includes a downhole tool to sample fluid from a subterranean formation, and a plurality of fluidly coupled pump modules disposed on the downhole tool. Each of the pump modules includes: a pump having a pump inlet and a pump outlet, where the pump inlet is coupled to a first flowline; a first valve assembly having first, second and third ports, wherein the first port is coupled to the first flowline, the second port is coupled to the pump outlet, and the third port is coupled to the first flowline; and a second flowline not fluidly coupled to the first valve assembly or the pump.
Abstract:
A method for determining a dip of a geological structure in a subterranean formation, involves generating, using a 3D resistivity analyzer, a first intermediate result describing the dip of the geological structure based on 3D resistivity data collected from a borehole penetrating the subterranean formation. The method further involves generating, using a borehole image analyzer, a second intermediate result describing the dip of the geological structure based on a borehole image collected from the borehole. The method further involves generating, by a computer processor combining the first intermediate result and the second intermediate result based on a pre-determined criterion, an integrated result describing the dip of the geological structure.
Abstract:
Systems, tools, and methods for measurement of a property of a solid body or fluid involve an electromagnetic measurement tool that includes a transmitter configured to transmit electromagnetic energy, a receiver configured to receive the electromagnetic energy, and a metamaterial element comprising a negative refractive index. The metamaterial element may focus the electromagnetic energy. The electromagnetic tool may be placed adjacent the solid body or fluid, electromagnetic energy may be transmitted via the transmitter, and the electromagnetic energy may be received with the receiver to measure a property of the solid body or fluid.
Abstract:
Systems and devices are provided that relate to a gas-filled radiation detector with an internal optical fiber (50). The internal optical fiber (50) may detect photons (59) emitted during ionization avalanche events triggered by incident radiation. Such a radiation detector may include a housing, a fill gas (48) within the housing, and an optical fiber (50)within the housing. The fill gas may interact with radiation through an ionization avalanche that produces light. The optical fiber (50) within the housing may capture the light and transmit the light out of the housing.
Abstract:
A technique facilitates transmission of electric signals across well components which move relative to each other in a wellbore environment. The well components are movably, e.g. rotatably, coupled to each other via one or more conductive bearings. Each conductive bearing has a conductive rolling element which enables relative movement, e.g. rotation, between the well components while simultaneously facilitating transmission of electric signals through the bearing. Portions of the bearing are coupled to each of the well components, and those bearing portions may be connected with electric leads to enable flow of electric signals through the bearing during operation of the system downhole.
Abstract:
The subject disclosure generally relates to the field of elongated structures such as coiled tubing and coiled tubing applications in hydrocarbon wells. More particularly, the subject disclosure relates to increasing the reach of coiled tubing by delaying the onset of buckling.
Abstract:
The subject disclosure relates to sonic logging while drilling. A transmitter and at least one receiver are mounted on a drill collar for performing sonic investigations of the formation traversing a borehole.
Abstract:
A method of treating a subterranean formation penetrated by a wellbore by contacting an energized fluid with the subterranean formation; and reducing a partial pressure of the energized fluid by an amount sufficient to form polymeric foam structure within the subterranean formation.
Abstract:
A method for mapping a subterranean formation having an electrically conductive wellbore casing therein may include using a low frequency electromagnetic (EM) transmitter and EM receiver operating at a low frequency of less than or equal to 10 Hertz to perform a first EM survey of the subterranean formation, and with either the low frequency EM transmitter or EM receiver within the electrically conductive wellbore casing. The method may further include injecting a magnetic fluid into the subterranean formation, and using the low frequency EM transmitter and EM receiver to perform a second EM survey of the subterranean formation after injecting the magnetic fluid.