摘要:
The present invention is directed to a process for the preparation of a doped anionic clay. In said process a trivalent metal source is reacted with a divalent metal source, at least one of the metal sources being either doped boehmite, doped MgO or doped brucite, to obtain a doped anionic clay. Suitable dopants are compounds containing elements selected from the group of alkaline earth metals (for instance Ca and Ba), alkaline metals, transition metals (for example Co, Mn, Fe, Ti, Zr, Cu, Ni, Zn, Mo, W, V, Sn), actinides, rare earth metals such as La, Ce, and Nd, noble metals such as Pt and Pd, silicon, gallium, boron, titanium, and phosphorus.
摘要:
The present invention is directed to a process for the preparation of crystalline anionic clay-containing bodies from sources comprising a trivalent metal source and a divalent metal source comprising the steps of: a) preparing a precursor mixture containing a liquid, a divalent metal source and/or a trivalent metal source, at least one of them being insoluble in the liquid; b) shaping the precursor mixture to obtain shaped bodies; c) optionally thermally treating the shaped bodies; and d) aging the shaped bodies to obtain crystalline anionic clay-containing bodies; with the proviso that if no trivalent metal source is present in the precursor mixture of step a), such source is added to the shaped bodies after shaping step b) and before aging step d); and with the further proviso that the combined use of an aluminium source as the trivalent metal source and a magnesium source as the divalent metal source is excluded. The quintessence of the present invention is that the major part of the final amount of anionic clay is formed after shaping, i.e., in situ in the shaped body. This results in attrition resistant bodies, without the need to add a binder material.
摘要:
Use of cationic layered materials in hydrocarbon conversion, purification, and synthesis processes, such as fluid catalytic cracking. Cationic layered materials are especially suitable for the reduction of Sox and Nox emissions and the reduction of the sulfur and nitrogen content in fuels like gasoline and diesel. A new process is provided for the preparation of cationic layered materials, which process avoids the use of metal salts and does not require the formation of anionic clay as intermediate.
摘要:
The present invention relates to a cracking catalyst composition comprising a physical mixture of 10-90 weight % of a cracking catalyst A and 90-10 weight % of a cracking catalyst B, whereby catalyst A is a zeolite-containing cracking catalyst, and catalyst B is a catalyst having a higher average pore volume in the pore diameter range of 20-200 ANGSTROM than catalyst A in the same pore diameter range and not containing M41S material. These compositions can suitably used for the fluid catalytic cracking of hydrocarbon feeds with high metal concentrations.
摘要:
The present invention relates to a cracking catalyst composition comprising a physical mixture of 10-90 weight % of a cracking catalyst A and 90-10 weight % of a cracking catalyst B, whereby catalyst A is a zeolite-containing cracking catalyst, and catalyst B is a catalyst having a higher average pore volume in the pore diameter range of 20-200 Å than catalyst A in the same pore diameter range and not containing M41S material. These compositions can suitably used for the fluid catalytic cracking of hydrocarbon feeds with high metal concentrations.