Abstract:
The invention provides a method for removing mercury from a liquid or gas hydrocarbon stream, mixtures thereof, including mixtures of liquid streams with a solid carbonaceous substance, by contacting the hydrocarbon stream with a composition comprising silver and a support material, wherein the composition as measured by ammonia chemisorption has a surface acidity in the range of 0.1-10.0 μmole of irreversible NH3/g of the composition.
Abstract:
A catalyst support for purification of exhaust gas includes a porous composite metal oxide, the porous composite metal oxide containing alumina, ceria, and zirconia and having an alumina content ratio of from 5 to 80% by mass, wherein after calcination in the air at 1100° C. for 5 hours, the porous composite metal oxide satisfies a condition such that standard deviations of content ratios (as at % unit) of aluminum, cerium and zirconium elements are each 19 or less with respect to 100 minute areas (with one minute area being 300 nm in length×330 nm in width) of the porous composite metal oxide, the standard deviation being determined by energy dispersive X-ray spectroscopy using a scanning transmission electron microscope equipped with a spherical aberration corrector.
Abstract:
A process and catalyst is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products using multifunctional catalysts. Multifunctional catalysts enable use of less expensive metal by substituting expensive metals for less expensive metals with no loss or superior performance in slurry hydrocracking. Less available and expensive ISM can be replaced effectively.
Abstract:
A nano-nickel catalyst and a hydrogenation device of carbon oxides are provided. The hydrogenation device is configured to reduce the carbon oxides to form low carbon hydrocarbons. The nano-nickel catalyst has a metallic nickel body and a plurality of microstructures connecting with at least one surface of the metallic nickel body. The microstructures are sharp, and have a length-diameter ratio ranging from 2 to 5.
Abstract:
Porous, extruded titania-based materials further comprising one or more acids and/or prepared using one or more acids, Fischer-tropsch catalysts comprising them, uses of the foregoing, processes for making and using the same and products obtained from such processes.