摘要:
A method for quantitatively ranking a plurality of prospects in a subsurface region, includes generating a subsurface digital elevatiomodel of each prospect and identifying a region of subsurface imaging uncertainty within the model. The method further includes generating, for the region of imaging uncertainty, multiple realizations of the model, and determining geometrical and physical characteristics of the prospect for each realization. The characteristics, chosen to be related to a likelihood that the prospect is lower risk, are summed and the prospects are ranked in accordance therewith.
摘要:
A method for analyzing characteristics of a geological formation includes obtaining at a processor data representative of at least one of stratigraphic, structural, or physical characteristics of the geological formation, applying at the processor a wavelet transform to at least a portion of the obtained data or data interpreted or derived from the obtained data to derive one or more wavelet transform coefficients representative of the obtained data, segmenting at the processor at least one or more of the obtained data or data interpreted or derived from the obtained data into segments, determining at the processor a measure of variability of the obtained data or the data interpreted or derived from the obtained data over each segment at one or more scales of the wavelet transform, wherein the measure of variability is based at least on the wavelet transform coefficients corresponding to each segment, and analyzing at the processor each segment based on the determined measure of variability to produce a stratigraphic, structural, or physical classification of the geological formation.
摘要:
A system and method may, based on a 3D seismic data set seed point, execute a seed picking algorithm, using the first point for picking a set of second points from the data set, setting each of the points in the set of second points as the first point and repeating the algorithm. An iteration number or other attribute may be assigned to the points, the iteration number corresponding to the number of times the algorithm repeated to process the point. The attribute or a number of attributes may be displayed as a visual characteristic for each point. An iterative process may be applied to a set of seismic data points, starting at a seed data point and finding a set of next iteration seed points from among the set of points neighboring the seed point, continuing only with next iteration seed points, and recording for each of a set of data points the number of points that are found by the process when the point is used as a seed data point. Attributes may include, for example, the total number of descendants of a seed point, the direction, for example, the azimuth, of propagation of the horizon picking process, or information that relates to the order in which points are picked such as an iteration number.
摘要:
Seismic imaging systems and methods that employ sensitivity kernel-based migration velocity analysis in 3D anisotropic media may demonstrate increased stability and accuracy. Survey data analysts employing the disclosed systems and methods are expected to provide better images of the subsurface and be better able to identify reservoirs and deposits for commercial exploitation. Certain embodiments migrate seismic survey data with an anisotropic velocity model to obtain common angle image gathers. These gathers are processed to obtain depth residuals along one or more horizons. Angle-domain sensitivity kernels are used to convert the depth residuals into velocity errors, which are then used to refine the velocity model. A user is then able to view a representation of the subsurface structure determined in part from the refined velocity model. Multiple iterations may be needed for the velocity model to converge. The velocity model may be a layered to have constant velocity values between formation boundaries.
摘要:
Models of underground formations. At least some of the illustrative embodiments are methods including creating a model of an underground formation. The creating may include: calculating a set of probabilities associated with a first horizontal location, each probability indicative of a likelihood of finding abutting geological layers; estimating a plurality of successions of geological layers to create a plurality of estimated successions, and the estimating using the set of probabilities; determining, for each of the estimated succession, a value indicative of how closely each estimated succession matches a measured succession, the measured succession determined by a seismic survey; and selecting from the plurality of estimated successions based on the values, the selecting creates a selected succession of geological layers, and the plurality of modeled values associated with the first horizontal location determined based on the selected succession of geological layers.
摘要:
Method for efficient computation of wave equation migration angle gathers by using multiple imaging conditions. Common reflection angle or common azimuth gathers or gathers including both common reflection angles and common azimuth angles are produced as the data are migrated. In the course of either wave equation migration or reverse time migration, the pressures and particle motion velocities that need to be computed are sufficient to also compute the Poynting vector pointing in the direction of source-side (35) or receiver-side (37) wavefield propagation. From that, the reflection and azimuth angles can be computed (38). The seismic images can then be stored in the appropriate angle bins, from which common reflection angle or azimuth data volumes can be assembled (39).
摘要:
A method for characterizing fracture planes generated during a hydraulic fracturing process, comprises receiving microseismic data from the hydraulic fracturing process and processing a microseismic event cloud from the received microseismic data. This is followed by determining at least one reservoir geometry from the microseismic event cloud. The determination of geometry may consist of determining multiple candidate geometries and probability of each. In some forms of the invention the method may comprise postulating a set of candidate geometries with differing numbers of fracture planes, determining the most probable locations of the postulated fracture planes in each member of the set of candidate geometries and also determining relative probabilities of the candidate geometries in the postulated set. Determining a location of a fracture plane may comprise calculating a number density for each microseismic event, dependent on distance from some possible location of a fracture plane or fracture network. Finding the location of a plane may then be finding the location for which the number density is greatest. The determination of reservoir geometry may be followed by determination of the area of the fracture planes and/or by a prediction of production.
摘要:
Fast anisotropy axis values are determined for each bin in seismic tinned by azimuth. A fast azimuth gather is determined within each bin in the seismic data from the fast anisotropy axis values. The earth's subsurface is imaged, using the fast azimuth gathers.
摘要:
A method for efficient inversion of measured geophysical data from a subsurface region to prospect for hydrocarbons. Gathers of measured data (40) are encoded (60) using a set of non-equivalent encoding functions (30). Then all data records in each encoded gather that correspond to a single receiver are summed (60), repeating for each receiver to generate a simultaneous encoded gather (80). The method employs iterative, local optimization of a cost function to invert the encoded gathers of simultaneous source data. An adjoint method is used to calculate the gradients of the cost function needed for the local optimization process (100). The inverted data yields a physical properties model (110) of the subsurface region that, after iterative updating, can indicate presence of accumulations of hydrocarbons.
摘要:
A method of determining a horizon volume. In one embodiment, the horizon volume is determined from obtained seismic information, and maps the obtained seismic information onto a flattened volume such that in the flattened volume, horizons represented in the obtained seismic information are shifted to be substantially coplanar with a surface defined by the horizon volume as an estimate of a single chronostratigraphic time such that the parameters of the flattened volume include (i) a two-dimensional position in a surface plane, and (ii) a metric related to chronostratigraphic time.