摘要:
Method for simultaneous full-wavefield inversion of gathers of source (or receiver) encoded (30) geophysical data (80) to determine a physical properties model (20) for a subsurface region, especially suitable for surveys where fixed-receiver geometry conditions were not satisfied in the data acquisition (40). The inversion involves optimization of a cross-correlation objective function (100).
摘要:
Method for converting seismic data to obtain a subsurface model of, for example, bulk modulus or density. The gradient of an objective function is computed (103) using the seismic data (101) and a background subsurface medium model (102). The source and receiver illuminations are computed in the background model (104). The seismic resolution volume is computed using the velocities of the background model (105). The gradient is converted into the difference subsurface model parameters (106) using the source and receiver illumination, seismic resolution volume, and the background subsurface model. These same factors may be used to compensate seismic data migrated by reverse time migration, which can then be related to a subsurface bulk modulus model. For iterative inversion, the difference subsurface model parameters (106) are used as preconditioned gradients (107).
摘要:
Method for reducing instability and increasing computational efficiency in tomographic inversion for velocity model building. A system of tomographic equations is developed for a uniform grid. A non-uniform parameterization is found for which a linear mapping exists between the space of the uniform grid and the space of the non-uniform grid. The matrix that relates velocity to the tomographic data in the non-uniform representation is then given by the matrix product of the corresponding matrix in the uniform grid representation and the mapping matrix. Inversion can then be performed for the non-uniform parameterization on a smaller, more stable matrix.
摘要:
Method for simultaneous full-wavefield inversion of gathers of source (or receiver) encoded geophysical data to determine a physical properties model for a subsurface region, especially suitable for surveys where fixed receiver geometry conditions were not satisfied in the data acquisition. First, a shallow time window of the data (202) where the fixed receiver condition is satisfied is inverted by simultaneous encoded (203) source inversion (205). Then, the deeper time window of the data (208) is inverted by sparse sequential source inversion (209), using the physical properties model from the shallow time window (206) as a starting model (207). Alternatively, the shallow time window model is used to simulate missing far offset data (211) producing a data set satisfying the stationary receiver assumption, after which this data set is source encoded (212) and inverted by simultaneous source inversion (214).
摘要:
An improved method for reducing the accuracy requirements on the starting model when performing multi-scale inversion of seismic data (65) by local objective function optimization (64). The different scales of inversion are brought about by incorporating a low-pass filter into the objective function (61), and then decreasing the amount of high- frequency data that is filtered out from one scale to the next. Moreover, the filter is designed to be time varying, wherein the filter's low-pass cutoff frequency decreases with increasing traveltime of the seismic data being filtered (62). The filter may be designed using Pratt' s criterion for eliminating local minima, and performing averages (or other statistical measure) of the period and the traveltime error only with respect to source and receiver location but not traveltime (63).
摘要:
Method for simultaneous full-wavefield inversion of gathers of source (or receiver) encoded geophysical data to determine a physical properties model (118) for a subsurface region, especially suitable for surveys where fixed receiver geometry conditions were not satisfied in the data acquisition. Simultaneous source separation (104) is performed to lessen any effect of the measured geophysical data's not satisfying the fixed-receiver assumption. A data processing step (106) coming after the simultaneous source separation acts to conform model-simulated data (105) to the measured geophysical data (108) for source and receiver combinations that are missing in the measured geophysical data.
摘要:
Method for simultaneous full-wavefield inversion of gathers of source (or receiver) encoded geophysical data to determine a physical properties model for a subsurface region, especially suitable for surveys where fixed receiver geometry conditions were not satisfied in the data acquisition. First, a shallow time window of the data (202) where the fixed receiver condition is satisfied is inverted by simultaneous encoded (203) source inversion (205). Then, the deeper time window of the data (208) is inverted by sparse sequential source inversion (209), using the physical properties model from the shallow time window (206) as a starting model (207). Alternatively, the shallow time window model is used to simulate missing far offset data (211) producing a data set satisfying the stationary receiver assumption, after which this data set is source encoded (212) and inverted by simultaneous source inversion (214).