摘要:
A magnetic gas turbine sensor (25) for sensing the speed and/or torque of a shaft in a gas turbine engine, the sensor comprising a magnetically energisable pole piece (3), a magnet (2) associated with the pole piece and a conductive sensing element (4) wrapped or wound around the pole piece (3) and inductively coupled to the pole piece. The sensor includes a first sensor casing including a first inner fluid conduit (36) for fluid coolant, the first fluid conduit being inside the casing and running alongside and/or adjacent the pole piece, magnet and/or conductive sensing element, and the sensor also including a second sensor casing surrounding the first sensor casing and defining a second outer fluid conduit (37) for fluid coolant and at least partially surrounding the first fluid conduit. Fluid coolant may flow into the sensor at its proximal mounting end, through the first fluid conduit over or through the pole piece, magnet and/or conductive sensing element to the sensing end, and then through the second fluid conduit from the distal sensing end (29) to the outlet at the proximal mounting end (31). In an alternative embodiment, a hollow conductive tube is used at the same time as the sensing element and as a coolant fluid conduit. The sensing tube is arranged to be part of a closed electrical circuit such that current can be induced in this circuit, and this closed circuit is magnetically coupled to a secondary coil, to form a transformer such that a current in the sensing circuit induces a voltage across the secondary coil.
摘要:
The present invention relates to a method of manufacturing a sensor for a high-temperature environment. The method comprises the steps of: depositing an electrically insulating material (108) to form at least one portion of a layer (112); depositing an electrically conductive material (110) to form at least one further portion of the layer (112); depositing successive layers (112), each layer being formed of the electrically insulating material (108) and/or the electrically conductive material (110), wherein the electrically conductive material (110) in each layer is deposited on at least a portion of the electrically conductive material (110) in the previous layer so as to form at least one electrically continuous portion extending through the layers; and fusing the materials. The invention further relates to a sensor for a high-temperature environment comprising: at least one electrically conductive portion; and at least one electrically insulating portion, encapsulating the or each electrically conductive portion. The or each electrically conductive portion and the or each electrically insulating portion are fused to form a monolithic body.
摘要:
A sensing system for sensing rotational speed of a shaft in a gas turbine engine, comprising: a target, the target fixed to the shaft in use, the target comprising at least one ferrous target element radially spaced from the shaft, and a first magnetic probe assembly comprising a first pole piece element and a second pole piece element, wherein the first pole piece element and the second pole piece element are radially spaced from one another so that the at least one ferrous target element passes proximate to and between the first and second pole piece elements as the target rotates, so that radial movement of the at least one ferrous target element away from one of the first and second pole piece elements results in simultaneous and corresponding radial movement of the at least one ferrous target element towards the other of the first and second pole piece elements. By providing pole piece elements that are radially spaced from each other, radial movement of the target away from one pole piece element as a result of eccentric rotation of the shaft is compensated for by corresponding movement of the target towards the other pole piece element, so that the output signal remains stable.
摘要:
A cooled thermocouple arrangement (1) including a thermocouple (2) comprising two wires (3,4) joined at a first sensing end (5) to define a hot thermocouple function. At least a portion of the wires (3,4) are in thermal communication with a cooling arrangement, and the cooling arrangement has an inlet (14) for coolant and an outlet (15) for coolant. The thermocouple probe arrangement (1) includes a first inlet temperature sensor (21) for determining the temperature of the coolant as it enters the cooling arrangement, and a flow rate sensor (20) for determining the flow rate of coolant passing through the cooling arrangement. The thermocouple probe arrangement (1) includes connectors for connecting the outputs from the thermocouple (2), first inlet temperature sensor (21) and the flow rate sensor (20) to a correction data processor (23) whereby the data processor can correct the temperature sensed by the thermocouple to take account of the effect of the cooling arrangement. The pair of thermocouple wires (3,4) are arranged inside a sheath or casing, and a cooling jacket (12) is provided around the thermocouple probe. The cooling jacket (12) includes a pair of concentric tubes (16,17) defining a return coolant circuit from the end of the probe proximal the connectors (8), to a portion of the probe distal from the connectors, and then back to the proximal end (8) of the probe, and the portion of the thermocouple probe containing the sensing end (5) of the thermocouple projects from the distal end of the cooling jacket (12).
摘要:
Apparatus and method of monitoring for obstructions in a pipe or channel. The method comprising the steps of: (1) transmitting a wave into a first end of the pipe or channel from a transmitting transducer at a first known location relative to the pipe or channel, wherein the frequency f of the transmitted wave (13) varies in a predictable manner governed by the function f=f(t), where t is time; (2) noting the frequency f tr of the transmitted wave; (3) detecting any reflections of the transmitted wave travelling towards the first end of the pipe or channel at a receiving transducer at a second known location relative to the pipe or channel; (4) determining the frequency f rec of the reflected wave (14); (5) comparing the frequency f tr of the transmitted wave and the frequency f rec of the reflected wave, being transmitted from and being received by the respective transducers at the same time t; and 6)determining the distance L from the transmitting transducer to an obstruction and back to the receiving transducer from the difference Δf between the frequency f tr and the frequency f rec .
摘要:
A method is provided for determining timing points indicative of the passage of a blade in a turbine engine. The method comprises the steps of: providing a first sensing coil proximate to a path of the blade, providing a second sensing coil proximate to the path of the blade, the second sensing coil spaced from the first sensing coil in a direction parallel to the path of the blade, and comparing a signal generated in the first sensing coil with a signal generated in the second sensing coil to derive a timing point indicative of the passage of the blade.
摘要:
A mounting terminal head of a thermocouple head unit having a metal casing for an end of a thermocouple wire, and thermocouple signal terminals 4 for connection to a thermocouple wire. The thermocouple head unit includes an insulating support member 8 extending around the outside of the thermocouple head unit and supporting the thermocouple signal terminals.