Abstract:
A resin composition, a metal-resin composite formed with the resin composition and a metal substrate and a preparation method and use thereof, and an electronic product shell using the resin composition are provided. The resin composition comprises a base resin, a modified resin and a fiber, wherein the base resin is one or two or more of a polyarylene sulfide resin, a polyether resin, and a polyester resin, and the modified resin has a melting point that is 3-24°C higher than the glass transition temperature of the base resin.
Abstract:
A method for metalizing a polymer substrate and a polymer article prepared thereof. First a polymer substrate having a base polymer and at least one metal compound dispersed in the base polymer is provided. A surface of the polymer substrate is then irradiated with an energy beam such that a water contact angle of the surface of the polymer substrate is at least 120°. And then the surface of the polymer substrate is subjected to chemical plating.
Abstract:
A method for metalizing a polymer substrate and a polymer article prepared thereof. First a polymer substrate having a base polymer and at least one metal compound dispersed in the base polymer is provided. A surface of the polymer substrate is then irradiated with an energy beam such that a water contact angle of the surface of the polymer substrate is at least 120°. And then the surface of the polymer substrate is subjected to chemical plating.
Abstract:
A positive temperature coefficient heating assembly includes a heating core (10) including a first metal electrode plate (2a), a second metal electrode plate (2b) and a plurality of PTC ceramic chips (1); an insulating layer coated on the heating core (10); and a metal tube (8); the PTC ceramic chip (1) includes a positive electrode layer, a negative electrode layer, and a ceramic sintered layer; a plurality of first limit grooves (21a) are formed in the first metal electrode plate (2a), a plurality of second limit grooves (2b) are formed in the second metal electrode plate (21b), a first end of each of the PTC ceramic chips (1) is embedded in one of the first limit grooves (21a), and a second end of each of the PTC ceramic chips (1) is embedded in one of the second limit grooves (21b).
Abstract:
A metal forming apparatus includes a smelting device, a molding device, an injection device and a vacuumizing device. The smelting device defines a smelting chamber, and includes a rotatable crucible and a heating unit both disposed within the smelting chamber. The molding device defines a molding chamber sealedly communicated with the smelting chamber. The injection device includes a charging barrel assembly sealedly disposed at a joint between the molding device and the smelting device and an injection unit sealedly connected with the smelting device. The vacuumizing device is sealedly connected with the smelting device and the molding device respectively so as to vacuumize the smelting chamber and the molding chamber.
Abstract:
A metal shell includes a metal body (1) having a through hole; a plastic member (4) disposed on the metal body (1) at a position of the through hole (3); and a NFC antenna (2) disposed on a surface of the plastic member (4) and configured to receive a signal via the through hole (3). An area of a part of the NFC antenna (2) overlapping the through hole (3) is larger than one third of an area of the NFC antenna (2). A cell phone including the metal shell is also provided.
Abstract:
The present disclosure provides a shell,a method of preparing the same and the use of the shell. The shell includes: a base (1) made of ceramic; and a bending part (2) disposed connected with an edge of the base (1) and made of an amorphous alloy.
Abstract:
Metalized plastic substrate and methods of producing the same are provided herein. The method includes providing a plastic having at least one accelerator dispersed in the plastic. The accelerator/s have a formula AM x B y O z , in which A is one or more elements selected from groups 10 and 11 of the Element Periodic Table; M is one or more metal elements in three plus selected from the group consisting of Fe, Co, Mn, Al, Ga, In, TI, and rare earth elements; and O is oxygen; and x=0-2, y=0.01-2; z=1-4; and the accelerator/s further have an alternative formula A'M' m O n , in which A' is one or more elements selected from groups 9, 10, and 11 of the periodic table; M' is one or more elements selected from the group consisting of Cr, Mo, W, Se, Te, and Po; and O is oxygen; and m=0.01-2; n=2-4. The method includes the step of irradiating a surface of plastic substrate to expose at least a first accelerator. The method further includes plating the irradiated surface of the plastic substrate to form at least a first metal layer on the irradiated surface, and then plating the first metal layer to form at least a second metal layer.
Abstract:
A rare earth permanent magnetic material is provided, which is represented by the general formula of R a-x-y Ho x Dy y Fe 1-a-b-c-d Co d M c B b , wherein x, y, a, b, c and d are weight percentages of corresponding elements, in which 28%≤ a ≤34%, 0.95%≤ b ≤1.3%, 0≤ c ≤1.5%, 1%≤ d ≤10%, 15%≤ x ≤20% and 3%≤ y ≤8%; wherein R is a rare earth element, which is selected from the group consisting of Nd, Pr, La, Ce, Gd, Tb and combinations thereof; and wherein M is selected from the group consisting of Al, Cu, Ti, V, Cr, Zr, Hf, Nb, Sn, Mo, Ga, Si and combinations thereof. A method for preparing the rare earth permanent magnetic material is also provided.