摘要:
(1) A method for producing vapor grown carbon, comprising mixing a raw material gas containing an organic compound and an organo-transition metallic compound preliminarily heated preferably to a temperature 100 to 145 °C with a carrier gas heated preferably to a temperature 700 to 1,600 °C, and introducing the resultant gas mixture into a carbon fiber production zone, wherein preferably a mixture of an aromatic compound and acetylene, ethylene, or butadiene is used as an organic compound; (2) a method in which a transition metallic compound is dissolved in a solvent, the resultant solution is atomized into fine droplets, the solvent in the droplets is evaporated to thereby obtain fine particles of the transition metal compound, the drifting particles are introduced with an organic compound gas into the carbon fiber production zone; (3) an apparatus used in the production methods; and (4) vapor grown carbon fiber thereby produced.
摘要:
Coagulation spinning produces structures such as fibers, ribbons, and yarns of carbon nanotubes. Stabilization, orientation, and shaping of spun materials are achieved by post-spinning processes. Advantages include the elimination of coresheath effects due to carbonaceous contaminants, increasing mechanical properties, and eliminating dimensional instabilities in liquid electrolytes that previously prohibited the application of these spun materials in electrochemical devices. These advances enable the application of coagulation-spun nanotube fibers, ribbons, and yarns in actuators, supercapacitors, and in devices for electrical energy harvesting.
摘要:
A fluorinated carbon fiber has a hollow core structure in which a number of hexagonal carbon layers in the shape of a cup having no bottom are stacked. Edges of the hexagonal carbon layers are exposed on the inner and outer surfaces of the fluorinated carbon fiber. In the fluorinated carbon fiber, the exposed edges of the hexagonal carbon layers are fluorinated and have a structure shown by C x F y .
摘要:
A carbon fiber having catalytic metal supported thereon according to the present invention is a carbon fiber in which a number of hexagonal carbon layers in the shape of a cup having no bottom are stacked. At least part of edges of the hexagonal carbon layers is exposed at an outer surface or inner surface of the carbon fiber. Catalytic metal is supported on the exposed edges of the hexagonal carbon layers. The edges of the hexagonal carbon layers are further exposed by removing a deposited layer formed on the outer surface or inner surface of the carbon fiber. The exposed edges of the hexagonal carbon layers have an extremely high activity and are suitable as a support for catalytic metal.
摘要:
In an expanded carbon fiber product according to the present invention, a number of hexagonal carbon layers in the shape of a cup having no bottom are stacked. At least part of edges of the hexagonal carbon layers is exposed at an outer surface or inner surface of the expanded carbon fiber product. At least part of gaps between the hexagonal carbon layers is larger than the gaps between the hexagonal carbon layers at the time of vapor growth.
摘要:
A fine carbon fiber having an outer diameter of 1 to 80 nm and an aspect ratio of 10 to 30,000, comprising a hollow center portion and a multi-layer sheath structure of a plurality of carbon layers, the layers forming annular rings, wherein the sheath-forming carbon layers form an incomplete sheath, i.e., the carbon layers are partially broken or disrupted in a longitudinal direction, and the outer diameter of the carbon fiber and/or the diameter of the hollow center portion are not uniform in a longitudinal direction. The carbon fiber is obtained by instantaneously reacting a carrier gas at a high temperature and an organic compound gas kept at a temperature below the decomposition temperature of the transition metal compound and has a conductivity equivalent to that of a conventional vapor phase method and is useful as a filler material in resins, rubbers, paints and the like.
摘要:
In an expanded carbon fiber product according to the present invention, a number of hexagonal carbon layers in the shape of a cup having no bottom are stacked. At least part of edges of the hexagonal carbon layers is exposed at an outer surface or inner surface of the expanded carbon fiber product. At least part of gaps between the hexagonal carbon layers is larger than the gaps between the hexagonal carbon layers at the time of vapor growth.
摘要:
A graphite nanofiber material herein provided has a cylindrical structure in which graphene sheets each having an ice-cream cone-like shape whose tip is cut off are put in layers through catalytic metal particles; or a structure in which small pieces of graphene sheets having a shape adapted for the facial shape of a catalytic metal particle are put on top of each other through the catalytic metal particles. The catalytic metal comprises Fe, Co or an alloy including at least one of these metals. The material can be used for producing an electron-emitting source, a display element, which is designed in such a manner that only a desired portion of a luminous body emits light, a negative electrode carbonaceous material for batteries and a lithium ion secondary battery.
摘要:
The present invention relates to a a continuous process for producing carbon fibrils by decomposing a source of carbon at elevated temperatures in contact with a multivalent metal and recovering the fibrils formed thereby comprising the steps of introducing catalyst particles having a size of up to 400 µm (microns) and comprising at least one multivalent transition metal on a particulate substrate into a reactor heated to a temperature of 500°C to 1500°C, and recovering the fibrils formed thereby wherein said metal is present on said substrate as a multiplicity of discontinuous catalytic sites which, at least during fibril formation, have a size of 3,5 to 70 nm (35 to 700 Å) which size is measured by measuring the size of the transition metal particles recovered along with produced fibrils. This invention also relates to a reaction apparatus to be used for carrying out said process.