摘要:
Provided herein is a method of forming a composition by co-processing nanocarbon aggregates and carbon black aggregates, which includes providing nanocarbon aggregates, providing carbon black aggregates, and mixing the nanocarbon aggregates and the carbon black aggregates such that the nanocarbon aggregates disperse into looser aggregates of nanocarbons and carbon black, or individualized nanocarbons dispersed among the carbon black aggregates.
摘要:
A new method for recovering a catalytic metal and carbon nanotubes from a supported catalyst is provided. The carbon nanotube, including carbon nanotube structures, may serve as the support for the catalytic metal. The valence state of the catalytic metal, if not already in the positive state, is raised to a positive state by contacting the supported catalyst with a mild oxidizing agent under conditions which does not destroy the carbon nanotube. The supported catalyst is simultaneously or subsequently contacted with an acid solution to dissolve the catalytic metal without dissolving the carbon nanotube.
摘要:
Methods of preparing single walled carbon nanotubes are provided. An arrangement comprising one or more layers of fullerene in contact with one side of a metal layer and a solid carbon source in contact with the other side of metal layer is prepared. The fullerene/metal layer/solid carbon source arrangement is then heated to a temperature below where the fullerenes sublime. Alternatively, a non-solid carbon source may be used in place of a solid carbon source or the metal layer may simply be saturated with carbon atoms. A multiplicity of single walled carbon nanotubes are grown on the fullerene side of the metal layer, wherein at least 80% of the single walled carbon nanotubes in said multiplicity have a diameter within ± 5% of a single walled carbon nanotube diameter D present in said multiplicity, said diameter D being in the range between 0.6-2.2 nm.
摘要:
A polymeric composition having improved toughness and conductivity comprising carbon fibrils, at least a portion of which are in the form of aggregates, wherein, as measured on an area basis, substantially all of the aggregates are less than about 35 mu m in diameter. A polymeric composition having improved toughness and conductivity is prepared by combining carbon fibrils, at least a portion of which are in the form of aggregates, with a polymeric material, mixing the combination to distribute the fibrils in the polymeric material and applying shear to the combination to break down the aggregates until substantially all of the aggregates are less than about 35 mu m in diameter.
摘要:
Methods of preparing single walled carbon nanotubes are provided. Carbon containing gas is contacted with a supported metal catalyst under reaction conditions to yield at least 90% single walled carbon nanotubes and at least 1 gram single walled carbon nanotubes/gram metal catalyst. The support material may be calcined at temperatures between 150 and 600°C, and may have at least one oxidized planar surface. Reaction conditions include less than 10 atmospheres pressure and less than 800°C.
摘要:
A new method for preparing a supported catalyst is herein provided. The supported catalyst comprises a carbon nanotube network structure containing metal catalysts. The metal catalyst may be loaded onto functionalized carbon nanotubes before forming the carbon nanotube network structure. Alternatively, the metal catalyst may be loaded onto the carbon nanotube network structures themselves.
摘要:
Methods of preparing conductive thermoset precursors containing carbon nanotubes is provided. Also provided is a method of preparing conductive thermosets containing carbon nanotubes. The carbon nanotubes may in individual form or in the form of aggregates having a macromorpology resembling the shape of a cotton candy, bird nest, combed yarn or open net. Preferred multiwalled carbon nanotubes have diameters no greater than 1 micron and preferred single walled carbon nanotubes have diameters less than 5 nm. Carbon nanotubes may be adequately dispersed in a thermoset precursor by using a extrusion process generally reserved for thermoplastics. The thermoset precursor may be a precursor for epoxy, phenolic, polyimide, urethane, polyester, vinyl ester or silicone. A preferred thermoset precursor is a bisphenol A derivative.
摘要:
Graphitic nanotubes, which includes tubular fullerenes (commonly called 'buckytubes') and fibrils, which are functionalized by chemical substitution or by adsorption of functional moieties. More specifically the invention relates to single walled carbon nanotubes having diameters than 5 nanometers which are uniformly or non-uniformly substituted with chemical moieties or upon which certain cyclic compounds are adsorbed and to complex structures comprised of such functionalized nanotubes linked to one another. The invention also relates to methods for introducing functional groups onto the surface of such nanotubes. The invention further relates to uses for functionalized single walled carbon nanotubes.
摘要:
A method of treating carbon fibrils and carbon fibril structures such as assemblages, aggregates and hard porous structures with a plasma to effect an alteration of the surface or structure of the carbon fibril or fibrils. The method can be utilized to functionalize, prepare for functionalization or otherwise modify the fibril surface via a "dry" chemical process.
摘要:
A method of treating carbon fibrils and carbon fibril structures such as assemblages, aggregates and hard porous structures with a plasma to effect an alteration of the surface or structure of the carbon fibril or fibrils. The method can be utilized to functionalize, prepare for functionalization or otherwise modify the fibril surface via a "dry" chemical process.