摘要:
Yeast cells with a reduced general control response to amino acid starvation were found to have increased tolerance to butanol in the growth medium. The reduced response was engineered by genetic modification of a gene involved in the response, a GCN gene, to eliminate activity of the encoded protein. Yeast strains with an engineered butanol biosynthetic pathway and a genetic modification in a gene involved in the general control response to amino acid starvation, which have increased butanol tolerance, are useful for production of butanol.
摘要:
A method is provided for producing butanol through microbial fermentation, in which the butanol product is removed during the fermentation by extraction into a water-immiscible organic extractant in the presence of at least one osmolyte at a concentration at least sufficient to increase the butanol partition coefficient relative to that in the presence of the osmolyte concentration of the basal fermentation medium and of an optional fermentable carbon source. The osmolyte may comprise a monosaccharide, a disaccharide, glycerol, sugarcane juice, molasses, polyethylene glycol, dextran, high fructose corn syrup, corn mash, starch, cellulose, and combinations thereof. Also provided is a method and composition for recovering butanol from a fermentation medium.
摘要:
The present invention is related to a recombinant host cell, in particular a yeast cell, comprising a dihydroxy-acid dehydratase polypeptide. The invention is also related to a recombinant host cell having increased specific activity of the dihydroxy-acid dehydratase polypeptide as a result of increased expression of the polypeptide, modulation of the Fe-S cluster biosynthesis of the cell, or a combination thereof. The present invention also includes methods of using the host cells, as well as, methods for identifying polypeptides that increase the flux in an Fe-S cluster biosynthesis pathway in a host cell.
摘要:
A method for producing butanol through microbial fermentation, in which the butanol product is removed during the fermentation by extraction into a water-immiscible organic extractant in the presence of at least one electrolyte at a concentration at least sufficient to increase the butanol partition coefficient relative to that in the presence of the salt concentration of the basal fermentation medium, is provided. The electrolyte may comprise a salt which dissociates in the fermentation medium, or in the aqueous phase of a biphasic fermentation medium, to form free ions. Also provided is a method and composition for recovering butanol from a fermentation medium.
摘要:
The present invention is related to a recombinant host cell, in particular a yeast cell, comprising a dihydroxy-acid dehydratase polypeptide. The invention is also related to a recombinant host cell having increased specific activity of the dihydroxy-acid dehydratase polypeptide as a result of increased expression of the polypeptide, modulation of the Fe—S cluster biosynthesis of the cell, or a combination thereof. The present invention also includes methods of using the host cells, as well as, methods for identifying polypeptides that increase the flux in an Fe—S cluster biosynthesis pathway in a host cell.
摘要:
A fermentation liquid feed including water and a product alcohol and optionally CO 2 is at least partially vaporized such that a vapor stream is produced. The vapor stream is contacted with an absorption liquid under suitable conditions wherein an amount of the product alcohol is absorbed. The portion of the vapor stream that is absorbed can include an amount of each of the water, the product alcohol and optionally the CO 2 . The temperature at the onset of the absorption of the vapor stream into the absorption liquid can be greater than the temperature at the onset of condensation of the vapor stream in the absence of the absorption liquid. The product alcohol can be separated from the absorption liquid whereby the absorption liquid is regenerated. The absorption liquid can include a water soluble organic molecule such as an amine.
摘要:
An E. coli host strain was engineered wherein genes adhE, ldhA, frdB, and pflB were disrupted and novel butanol dehydrogenase gene, sadB, from Achromobacter xylosoxidans , was added to produce the isobutanol production host.
摘要:
Methods for the evolution of NADPH binding ketol-acid reductoisomerase enzymes to acquire NADH binding functionality are provided. Specific mutant ketol-acid reductoisomerase enzymes isolated from Pseudomonas that have undergone co-factor switching to bind NADH are described.