摘要:
In one example, a mobile device segments a payload for transmission to a remote server and provides redundant data for each payload segment. The remote server examines the received payload on a per segment basis using the redundant data to identify segments associated with errors. The server then requests error correction bits for the identified segments using one or more exchanges with the mobile device. Thereafter, the server can perform error correction using the received error correction bits and then request re-transmission of the payload, if needed.
摘要:
In an example, a system is provided and the system includes a motor vehicle component client, a server located in the cloud, and an application to be installed on a personal portable device, such as mobile phone or other portable, mobile electronic device. In some examples, the system enables efficient vehicle software updates to the Engine Control Unit (ECU), the head unit, or the like, or combinations thereof, and/or enables efficient wireless transmission of vehicle data analytics associated with diagnostic information, location information, or the like, or combinations thereof.
摘要:
We disclose a new type of wireless telecommunications subscription service and related methods. In some embodiments, the new subscription service may be used by an eCall only MS, or by any other suitable wireless access device (NAD), in order to operate in a restricted access and mobility management (RAMM) mode (304). The RAMM service limits usage of network resources, while enabling utilization for certain limited kinds of calls. The service may be used for eCall, in the case of motor vehicles (FIG. 1), for example, or for machine to machine communications and remote alarms (FIG. 6). The new subscription service may be used to avoid an eCall only MS being denied access to a network due to non-use of a prepaid (USIM) subscription (314).
摘要:
Remote destination programming enables a user to define a desired destination (402, 406, 410) in advance of a journey. The destination may be stored in a user profile (502, 504) on a remote navigation server (400, 500). It may be uploaded there via a web interface (402), or through land-line or wireless telecom communications (410). Subsequently, for example beginning at a rental car agency, the navigation server supports navigation through any of several modes of operation, including a first mode in which the desired destination information is downloaded from the server (520) so as to program target navigation equipment (522) on-board the rental vehicle. In another mode, the user's GPS-enabled communication device (428) interacts with the navigation server (500) to upload periodic location data (430), and receive turn-by-turn directions (530) for the user. In this mode, there is no need for separate on-board navigation equipment to assist the user to the desired location.
摘要:
In one example, a network device stores a mapping of application operation modes to vehicle conditions such as a first condition of the vehicle powered but not moving and a second condition of the vehicle moving. The network device receives a wirelessly transmitted request for a particular application to utilize an interface powered by the vehicle. The network device compares an application identifier specified by the received request to the mapping. The network device then identifies a portion of the vehicle interface according to the comparison and signals control software on the vehicle to grant the particular application access to only the identified portion of the vehicle interface itself. The application can reside on the mobile device and utilize the vehicle interface as an extended interface, or the application can reside on the vehicle.
摘要:
In one example, a mobile device segments a payload for transmission to a remote server and provides redundant data for each payload segment. The remote server examines the received payload on a per segment basis using the redundant data to identify segments associated with errors. The server then requests error correction bits for the identified segments using one or more exchanges with the mobile device. Thereafter, the server can perform error correction using the received error correction bits and then request re-transmission of the payload, if needed.
摘要:
Improvements are disclosed for in-band signaling, i.e., transmission of data in a voice channel of a digital wireless network during a voice call session. A family of narrow-band signaling methods is disclosed to successfully pass data-carrying signals through the low-bit rate modes of the EVRC-B vocoder commonly used in CDMA wireless channels. Some embodiments generate a tapered signaling waveform in tandem with another waveform using FSK-modulation. These features can be used in cell phones or other wireless communication devices, including automotive applications.
摘要:
This invention pertains to methods and apparatus for data communications from vehicles, to obtain emergencies, concierge and other services, using a voice channel of a digital wireless telecommunications network. Signaling is described (FIG. 3) between a Server and an InΑ/βhicie System (FIG. 2) for commencing data sessions after establishing a voice channel call. Responsive to a predetermined signaling tone, a switch (PCM) mutes the speaker of the in-vehicie audio system. The call may be initiated from the vehicle automatically, and the call taker location may be unattended. Signaling methods are selected (FIGS. 4-5) for traversing both newer and legacy vocoders for ubiquitous operation.
摘要:
An inband signaling modem communicates digital data over a voice channel of a wireless telecommunications network. An input receives digital data. An encoder converts the digital data into audio tones that synthesize frequency characteristics of human speech. The digital data is also encoded to prevent voice encoding circuitry in the telecommunications network from corrupting the synthesized audio tones representing the digital data. An output then outputs the synthesized audio tones to a voice channel of a digital wireless telecommunications network.
摘要:
A receiver with a time diversity combining component recovers a digital data signal transmitted over a voice channel of a digital wireless telecommunications network. A feature extraction module receives an audio frequency waveform encoding the digital data signal and generates a feature vector representing the digital data signal. A bit sequence estimation module analyzes the feature vector and generates an estimated bit sequence corresponding to the digital data signal. A memory stores the feature vector if the estimated bit sequence contains errors. A time diversity combining component generates a second estimated bit sequence by analyzing the first feature vector in combination with one or more feature vectors stored in the memory.