摘要:
The present invention relates to a substrate having antimicrobial and/or antistatic properties. Such properties are imparted by applying a coating or film formed from a cationically-charged polymer composition. The polymer composition includes a noncationic ethylenically unsaturated monomer, an ethylenically unsaturated monomer capable of providing a cationic charge to the polymer composition, and a steric stabilization component incorporated into the cationically-charged polymer composition. The present invention also relates to a polymeric material comprising a base polymer blended with the above cationically-charged polymer composition.
摘要:
The present invention relates to a substrate having antimicrobial and/or antistatic properties. Such properties are imparted by applying a coating or film formed from a cationically-charged polymer composition. The polymer composition includes a noncationic ethylenically unsaturated monomer, an ethylenically unsaturated monomer capable of providing a cationic charge to the polymer composition, and a steric stabilization component incorporated into the cationically-charged polymer composition. The present invention also relates to a polymeric material comprising a base polymer blended with the above cationically-charged polymer composition.
摘要:
Leather composites and methods of making that include engineered leather substrates or composites are disclosed. The substrate includes leather, non-leather fibers, a binding agent and can further include cushioning agents, softeners, processing aids, and colorants. A composite can include the substrate and one or more additional layers, such as top coat layers, reinforcing layers, and cushioning layers. The substrate and or the composite can be chemically or mechanically embossed. The leather used to form the engineered leather substrate can be derived from post- industrial and/or post-consumer materials. The non-leather fibers can be organic or inorganic, and the composition can also include inorganic fillers, such as calcium carbonate, and clays. The cushioning agents can include polymeric microbubbles, foam, rubber particles, and other low density cushioning agents. The binding agents can be synthetic or natural, such as synthetic latex, natural latex, PVA, and starch.