摘要:
A method includes controlling a bearing fluid supply system to provide the bearing fluid to a hydrostatic bearing of the turbopump assembly. The bearing fluid includes a supercritical working fluid. The method also includes receiving data corresponding to a pressure of the bearing fluid measured at or near a bearing fluid drain fluidly coupled to the hydrostatic bearing, determining a thermodynamic state of the bearing fluid at or near the bearing fluid drain based at least in part on the received data, and controlling a backpressure regulation valve to throttle the backpressure regulation valve between an opened position and a closed position to regulate a backpressure in a bearing fluid discharge line to maintain the bearing fluid in a supercritical state in the hydrostatic bearing and/or at or near the bearing fluid drain.
摘要:
A method for controlling a heat engine system, comprising: initiating flow of a working fluid through a working fluid circuit having a high pressure side and a low pressure side by controlling a pump to pressurize and circulate the working fluid through the working fluid circuit; determining a configuration of the working fluid circuit by determining which of a plurality of waste heat exchangers and which of a plurality of recuperators to position in the high pressure side of the working fluid circuit; determining, based on the determined configuration of the working fluid circuit, which of a plurality of valves to position in a closed position to isolate a portion of the working fluid from the working fluid flowing through the working fluid circuit; receiving data corresponding to a measured temperature and/or pressure of the working fluid flowing through the working fluid circuit; determining whether the measured temperature and/or pressure exceeds a predetermined threshold; and actuating, if the measured temperature and/or pressure exceeds the predetermined threshold, one or more of the plurality of valves positioned in the closed position to position the one or more of the plurality of valves in an opened position or a partially opened position to enable at least a portion of the isolated portion of the working fluid to flow through the working fluid circuit.
摘要:
Embodiments of the invention generally provide a heat engine system, a method for generating electricity, and an algorithm for controlling the heat engine system which are configured to efficiently transform thermal energy of a waste heat stream into electricity. In one embodiment, the heat engine system utilizes a working fluid ( e.g. , sc-CO 2 ) within a working fluid circuit for absorbing the thermal energy that is transformed to mechanical energy by a turbine and electrical energy by a generator. The heat engine system further contains a control system operatively connected to the working fluid circuit and enabled to monitor and control parameters of the heat engine system by manipulating a power turbine throttle valve to adjust the flow of the working fluid. A control algorithm containing multiple system controllers may be utilized by the control system to adjust the power turbine throttle valve while maximizing efficiency of the heat engine system.
摘要:
A turbopump system includes a pump portion including a housing having a pressure release passageway disposed therein. The pump portion is disposed between a high pressure side and a low pressure side of a working fluid circuit. A drive turbine is coupled to the pump portion and configured to drive the pump portion to enable the pump portion to circulate a working fluid through the working fluid circuit. A pressure release valve is fluidly coupled to the pressure release passageway and configured to be positioned in an opened position to enable pressure to be released through the pressure release passageway and in a closed position to disable pressure from being released through the pressure release passageway.
摘要:
Cascade thermodynamic energy conversion cycles use multiple power turbines in a working fluid circuit for conversion of waste heat energy, with each turbine inlet temperature optimized to operate in a temperature spectrum to use a greater amount of thermal energy from each cycle. Various accompanying recuperator arrangements are also disclosed, and working fluid mass management systems integrated with the cascade cycles.