Abstract:
A bitumen and heavy oil upgrading process and system is disclosed for the synthesis of hydrocarbons, an example of which is synthetic crude oil (SCO). The process integrates Fischer-Tropsch technology with gasification and hydrogen rich gas stream generation. The hydrogen rich gas generation is conveniently effected using singly or in combination a hydrogen source, a hydrogen rich vapor from hydroprocessing and the Fischer-Tropsch process, a steam methane reformer (SMR) and autothermal reformer (ATR) or a combination of SMR/ATR. The feedstock for upgrading is distilled and the bottoms fraction is gasified and converted in a Fischer-Tropsch reactor. A resultant hydrogen lean syngas is then exposed to the hydrogen rich gas stream to optimize the formation of, for example, the synthetic crude oil. Partial upgrading and the commensurate benefits is detailed as well. A system for effecting the processes is also characterized in the specification.
Abstract:
A bitumen and heavy oil upgrading process and system is disclosed for the synthesis of hydrocarbons, an example of which is synthetic crude oil (SCO). The process advantageously avoids the waste attributed to residuum and/or petcoke formation which has a dramatic effect on the yield of hydrocarbon material generated. The process integrates Fischer-Tropsch technology with gasification and hydrogen rich gas stream generation. The hydrogen rich gas generation is conveniently effected using singly or in combination a hydrogen source, a hydrogen rich vapour from hydroprocessing and the Fischer-Tropsch process, a steam methane reformer (SMR) and autothermal reformer (ATR) or a combination of SMR/ATR. The feedstock for upgrading is distilled and the bottoms fraction is gasified and converted in a Fischer-Tropsch reactor. A resultant hydrogen lean syngas is then exposed to the hydrogen rich gas stream to optimize the formation of, for example, the synthetic crude oil. The hydrogen lean gas stream may also be effected by a water gas shift reaction, singly or in combination or in addition with the hydrogen rich gas stream generation. Partial upgrading and the commensurate benefits is detailed as well. A system for effecting the processes is also characterized in the specification.
Abstract:
A bitumen and heavy oil upgrading process and system is disclosed for the synthesis of hydrocarbons, an example of which is synthetic crude oil (SCO). The process advantageously avoids the waste attributed to residuum and/or petcoke formation which has a dramatic effect on the yield of hydrocarbon material generated. The process integrates Fischer-Tropsch technology with gasification and hydrogen rich gas stream generation. The hydrogen rich gas generation is conveniently effected using singly or in combination a hydrogen source, a hydrogen rich vapour from hydroprocessing and the Fischer-Tropsch process, a steam methane reformer (SMR) and autothermal reformer (ATR) or a combination of SMR/ATR. The feedstock for upgrading is distilled and the bottoms fraction is gasified and converted in a Fischer-Tropsch reactor. A resultant hydrogen lean syngas is then exposed to the hydrogen rich gas stream to optimize the formation of, for example, the synthetic crude oil. The hydrogen lean gas stream may also be effected by a water gas shift reaction, singly or in combination or in addition with the hydrogen rich gas stream generation. Partial upgrading and the commensurate benefits is detailed as well. A system for effecting the processes is also characterized in the specification.
Abstract:
An enhanced natural gas processing method using Fischer-Tropsch (FT) process for the synthesis of sulfur free, clean burning, hydrocarbon fuels, examples of which include syndiesel and aviation fuel. A selection of natural gas, separately or combined with portions of natural gas liquids and FT naphtha and FT vapors are destroyed in a syngas generator and used or recycled as feedstock to an Fischer-Tropsch (FT) reactor in order to enhance the production of syndiesel from the reactor. The process enhancement results is the maximum production of formulated syndiesel without the presence or formation of low value by-products.
Abstract:
An enhanced Fischer-Tropsch process for the synthesis of sulfur free, clean burning, hydrocarbon fuels, examples of which include syndiesel and aviation fuel. Naphtha is destroyed in a syngas generator and recycled as feedstock to an Fischer-Tropsch (FT) reactor in order to enhance the production of syndiesel from the reactor. The process enhancement results is the maximum production of formulated syndiesel without the formation of low value by-products.