摘要:
Embodiments of the invention provide a scintillator material, a scintillator system, and/or a method of detecting incident radiation using a scintillator material, or scintillator system, comprising a polymer material that comprises chromophores. Additional embodiments provide a scintillator material, scintillator system, and/or a method of detecting incident radiation using a scintillator material, or scintillator system, comprising a polymer material having one, two, three, or more, organic dyes dissolved therein wherein the polymer material having the one, two, three, or more dyes dissolved therein comprises chromophores. At least one of the dyes, termed the base dye, has a concentration in the range 0.5 to 3.5 mol/L. In a specific embodiment, the base dye has a concentration in the range 1.0 to 3.0 mol/L. This base dye concentration is high enough to achieve a substantial triplet-triplet state annihilation rate despite the negligible diffusion of the dye in the rigid polymer matrix.
摘要:
The subject invention pertains to a method for high speed, continuous manufacture of graded refractive index polymer optical fiber. The subject fiber material may be organic or perfluorinated. The subject method can include first forming energy activatable prepolymer compositions containing additives. The prepolymer compositions can be extruded at low temperature through a multi-annular die and surrounded by a co-extruded concentric melt stream which forms a tube with good structural integrity. The prepolymer compositions contained in the tube can be maintained at a temperature for a time sufficient to form the desired graded index profile. Energy can be delivered to the prepolymer compositions which can cause an irreversible chemical transformation and forms a mechanically and thermally stable polymer. A continuous process of thermal annealing of the fiber can be used to minimize residual stress. Multiple fibers may be produced simultaneously in a variety of physical configurations.
摘要:
A new scintillating optical fiber is used in an array as a scintillator plate for imaging with high energy radiation, particles and the like. The scintillating optical fiber is an inner plastic core fiber which is transparent to visible radiation and has an index of refraction of about 1.45 or greater, and the inner plastic core fiber has a plastic cladding material which has an index of refraction less than that of the inner plastic core fiber. The inner plastic core fiber contains a polymeric matrix material; a metal moiety; and an organic fluorescent material. The scintillator plates are useful in producing high efficiency and high resolution radiographic systems for x-ray medical diagnosis or non-destructive inspection as well as non-destructive inspection with thermal neutrons. In medical x-ray applications, such as mammography, the need for lower doses of x-rays for a given image quality is met and exceeded by the higher detection efficiency of these scintillator plates and their associated electronic read-out system.
摘要:
The subject invention pertains to a method for high speed, continuous manufacture of graded refractive index polymer optical fiber. The subject fiber material may be organic or perfluorinated. The subject method can include first forming energy activatable prepolymer compositions containing additives. The prepolymer compositions can be extruded at low temperature through a multi-annular die and surrounded by a co-extruded concentric melt stream which forms a tube with good structural integrity. The prepolymer compositions contained in the tube can be maintained at a temperature for a time sufficient to form the desired graded index profile. Energy can be delivered to the prepolymer compositions which can cause an irreversible chemical transformation and forms a mechanically and thermally stable polymer. A continuous process of thermal annealing of the fiber can be used to minimize residual stress. Multiple fibers may be produced simultaneously in a variety of physical configurations.
摘要:
Embodiments of the invention provide a scintillator material, a scintillator system, and/or a method of detecting incident radiation using a scintillator material, or scintillator system, comprising a polymer material that comprises chromophores. Additional embodiments provide a scintillator material, scintillator system, and/or a method of detecting incident radiation using a scintillator material, or scintillator system, comprising a polymer material having one, two, three, or more, organic dyes dissolved therein wherein the polymer material having the one, two, three, or more dyes dissolved therein comprises chromophores. At least one of the dyes, termed the base dye, has a concentration in the range 0.5 to 3.5 mol/L. In a specific embodiment, the base dye has a concentration in the range 1.0 to 3.0 mol/L. This base dye concentration is high enough to achieve a substantial triplet-triplet state annihilation rate despite the negligible diffusion of the dye in the rigid polymer matrix.
摘要:
This invention pertains to novel methods of radiography and novel screen-film cassettes with wide exposure latitude and/or high film contrast for use in radiography. The materials and methods of the subject invention can be used in mammography. In a specific example, this invention concerns the design of novel screen-film cassettes which can use at least one phosphor screen and multiple x-ray films in a single cassette. When used in mammography, this novel design enables additional breast images to be obtained on the faster, or slower, speed film from the same x-ray exposure used to produce a normal breast image on the normal speed film. These additional breast images provide high contrast information on the dense regions of the breast and in the edge areas of the compressed breast. These dense regions currently cause many missed diagnoses in breast cancer screening. The use of this novel multi-screen, multi-film cassette in mammography has the potential to improve the diagnostic accuracy in breast cancer detection, and simultaneously reduce patient breast glandular dose by eliminating unnecessary exposure due to film retake. Obtaining multiple film images of the same object from a single x-ray exposure can apply to many areas of medical and industrial radiography.
摘要:
The present invention is an image guide which has applications in such areas as endoscopy and industrial imaging. This invention utilizes gradient-index optical fiber in order to produce an image guide with improved performance characteristics. These improved performance characteristics include increased brightness, enhanced resolution, greater flexibility, and smaller diameter. The smaller diameter of the image guide permits access through smaller apertures in order to image inaccessible locations.