摘要:
A method of forming colloidal photonic crystal structures, which diffract light to create color, which includes dispersing solid particles within a magnetic liquid media, and magnetically organizing the solid particles within the magnetic liquid media into colloidal photonic crystal structures.
摘要:
The production of photocatalytic color switching of redox imaging nanomaterials for rewritable media is disclosed. The new color switching system is based on photocatalytic redox reaction enabling reversible and considerably fast color switching in response to light irradiation. In accordance with an exemplary embodiment, the color switching system can include a photocatalyst and an imaging media. With the assistance of photocatalyst, UV light irradiation can rapidly reduce the redox imaging nanomaterials accompany with obvious color changing, while the resulting reduced system can be switched back to original color state through visible light irradiation or heating in air condition. The excellent performance of the new color switching system promises their potential use as an attractive rewritable media to meet increasing needs for sustainability and environmental protection.
摘要:
A method of forming colloidal photonic crystal structures, which diffract light to create color, which includes dispersing solid particles within a magnetic liquid media, and magnetically organizing the solid particles within the magnetic liquid media into colloidal photonic crystal structures.
摘要:
The production of photocatalytic color switching of redox imaging nanomaterials for rewritable media is disclosed. The new color switching system is based on photocatalytic redox reaction enabling reversible and considerably fast color switching in response to light irradiation. In accordance with an exemplary embodiment, the color switching system can include a photocatalyst and an imaging media. With the assistance of photocatalyst, UV light irradiation can rapidly reduce the redox imaging nanomaterials accompany with obvious color changing, while the resulting reduced system can be switched back to original color state through visible light irradiation or heating in air condition. The excellent performance of the new color switching system promises their potential use as an attractive rewritable media to meet increasing needs for sustainability and environmental protection.