摘要:
Provided is an electrode, including: a collector; and an active material layer formed on the collector, wherein the active material layer contains sulfur-modified polyacrylonitrile and a lithium-titanium oxide, wherein an average secondary particle diameter of the sulfur-modified polyacrylonitrile is larger than an average secondary particle diameter of the lithium-titanium oxide, and wherein a content of the sulfur-modified polyacrylonitrile in the active material layer is from 5 mass% to 85 mass%, and a content of the lithium-titanium oxide in the active material layer is from 5 mass% to 85 mass%.
摘要:
A method for loading a support with a compound in an organic solvent, characterized in that the organic solvent contains an amine. The organic solvent preferably has a hydroxy group. The compound preferably has at least one of carboxyl, sulfonic, phosphoric, phosphonic, and alkoxysilyl groups. The support is preferably a metal oxide, such as titanium oxide, zinc oxide, or aluminum oxide. The resulting compound-loaded support is suited for use as an electrode.
摘要:
Disclosed is a novel compound represented by formula (1) below. In the formula, A represents an optionally substituted aromatic hydrocarbon ring or aromatic heterocyclic group, B represents a group including a chain of one to four pieces of one or more groups selected from groups represented by specific formulae (B-1) to (B-13) (such as -C=C- or -N=N-, specifically see the description), R1 to R3 each represent an optionally substituted hydrocarbon or hydrocarbonoxy group, at least one of R1 to R3 represents an optionally substituted hydrocarbonoxy group, R4 and R5 each represent an optionally substituted hydrocarbon group, R4 and R5 may be linked together to form a ring, and R4 and R5 may be each independently linked with A to form a ring.
摘要:
This disclosure provides: an electrode for a non-aqueous electrolyte secondary battery including a collector containing a porous metal and an organosulfur active material; a non-aqueous electrolyte secondary battery including the electrode as a positive electrode or a negative electrode; and an organosulfur active material to be used for production of the electrode.
摘要:
The present invention provides a method of producing sulfur-modified polyacrylonitrile, including: a step (1) of heating polyacrylonitrile and elemental sulfur in a rotating-type heating container including a discharge pipe and a sulfur vapor recovery unit while rotating the rotating-type heating container; a step (2) of liquefying a sulfur vapor by the sulfur vapor recovery unit while discharging hydrogen sulfide generated in the heating step; and a step (3) of returning the liquefied sulfur to a mixture of the sulfur and the polyacrylonitrile of the step (1).
摘要:
An object of the present invention is to provide an electrode active material that has a large charge discharge capacity, a high initial efficiency, as well as excellent cycle characteristics and rate characteristics and is favorably used in a non-aqueous electrolyte secondary battery. The present invention provides an organo sulfur-based electrode active material containing sodium and potassium in a total amount of 100 ppm by mass to 1000 ppm by mass; an electrode for use in a secondary battery, the electrode containing the organo sulfur-based electrode active material as an electrode active material; and a non-aqueous electrolyte secondary battery including the electrode. Preferably, the organo sulfur-based electrode active material further contains iron in an amount of 1 ppm by mass to 20 ppm by mass. Preferably, the organo sulfur-based electrode active material is sulfur-modified polyacrylonitrile, and the amount of sulfur in the organo sulfur-based electrode active material is 25 mass% to 60 mass%.
摘要:
The present invention provides an electrode for a nonaqueous electrolyte secondary battery, including: a current collector; and an electrode active material mixture layer containing an organosulfur electrode active material, a conductive assistant, and a binder, wherein the electrode active material mixture layer contains 0.01 mass% to 0.4 mass% of the binder with respect to a total mass of the electrode active material mixture layer, and wherein the electrode active material mixture layer is formed on the current collector.
摘要:
It is an object of the present invention to provide a non-aqueous electrolyte secondary battery that is small and lightweight, has a high capacity, and can be produced without causing a size increase and a significant cost increase, wherein, even if an internal short circuit occurs, thermal runaway is unlikely to occur, and there is no risk of ignition or explosion. The present invention is a method for suppressing thermal runaway caused by an internal short circuit, wherein sulfur-modified polyacrylonitrile is contained in a negative electrode material mixture layer in a non-aqueous electrolyte secondary battery that includes: a positive electrode that contains a positive electrode active material; a negative electrode that contains a negative electrode active material; and a non-aqueous electrolyte. The amount of sulfur-modified polyacrylonitrile can be set to 30 mass% or more.
摘要:
An object of the present invention is to provide a sulfur-based electrode active material with which a nonaqueous electrolyte secondary battery that has a large capacity and exhibits less deterioration of the cycle characteristics can be obtained even when an electrode is employed in which the sulfur-based electrode active material is used as an electrode active material and an aluminum foil is used as a current collector. The present invention relates to a method for producing an organosulfur electrode active material, including a step of obtaining an organosulfur compound by heat-treating an organic compound and sulfur and a step of treating the organosulfur compound with a basic compound. The organosulfur compound is preferably sulfur-modified polyacrylonitrile, and the basic compound is preferably ammonia. The organosulfur compound may be treated with the basic compound after the organosulfur compound is ground, or may be ground in a medium that contains the basic compound.
摘要:
Problem Provided are an additive for an electrolytic composition which can suppress the decrease of a short-circuit current and improve an open circuit voltage as compared to the case when conventional 4-TBpy is used as an additive for an electrolytic composition, and an electrolytic composition using this additive and a dye-sensitized solar cell. Solution The additive for an electrolytic composition for use in a dye-sensitized solar cell according to the present invention contains a pyridine derivative having a pyridine ring into which an alkylsilyl group is introduced, and it is preferable that this pyridine derivative has an alkylsilyl group at the 4-position of the pyridine ring, and it is more preferable that the pyridine derivative is 4-(trimethylsilyl)pyridine.