摘要:
The present invention includes devices and methods for dynamically monitoring cell adhesion and cell spreading. Cells are added to a microelectronic cell sensor array operably connected to an impedance analyzer. The device also includes a coating including biological molecule or organic compound capable of interacting with the cell. Cell adhesion and cell mobility is determined by detecting changes in impedance and comparing impedance or cell index values between samples.
摘要:
The present application includes systems and methods for identifying a compound capable of interacting with a G-Protein Coupled Receptor (GPCR) or Receptor Tyrosine Kinase (RTK) including providing a device capable of measuring cell-substrate impedance operably connected to an impedance analyzer, adding test cells expressing a GPCR or a RTK to wells of the device, monitoring the impedances of the wells before and after adding a compound of interest, determining the change in the impedance or cell index of a well, comparing the change in impedance or cell index between the compound and the control, and identifying the compound interacts with the GPCR or RTK if the comparison demonstrates a significant difference between the change in impedance or cell index.
摘要:
The present invention includes devices and methods for transfecting a cell or cell population and dynamic monitoring of cellular events. A variety of microelectronic devices are provide that incorporate functions such as electroporation, modulation of a transmembrane potential and dynamic monitoring of cellular functions and mechanisms.
摘要:
The present invention includes a method of measuring cytolytic activity including providing a device capable of monitoring cell-substrate impedance operably connected to an impedance analyzer, adding target cells to at least one well of the device, adding effector cells to the at least one well, monitoring impedance of the at least one well and optionally determining a cell index from the impedance, wherein monitoring impedance includes measuring impedance during at least one time point before and at least one time point after adding effector cells, and determining viability of said target cells after adding effector cells by comparing the impedance or optionally the cell index at the at least one time point after adding effector cells to the impedance or optionally the cell index at the at least one time point before adding effector cells.