Abstract:
Data center interconnections, which encompass WSCs as well as traditional data centers, have become both a bottleneck and a cost/power issue for cloud computing providers, cloud service providers and the users of the cloud generally. Fiber optic technologies already play critical roles in data center operations and will increasingly in the future. The goal is to move data as fast as possible with the lowest latency with the lowest cost and the smallest space consumption on the server blade and throughout the network. Accordingly, it would be beneficial for new fiber optic interconnection architectures to address the traditional hierarchal time-division multiplexed (TDM) routing and interconnection and provide reduced latency, increased flexibility, lower cost, lower power consumption, and provide interconnections exploiting scalable optical modular optically switched interconnection network as well as temporospatial switching fabrics allowing switching speeds below the slowest switching element within the switching fabric.
Abstract:
Wavelength division multiplexing (WDM) has enabled telecommunication service providers to fully exploit the transmission capacity of optical fibers. State of the art systems in long-haul networks now have aggregated capacities of terabits per second. Moreover, by providing multiple independent multi-gigabit channels, WDM technologies offer service providers with a straight forward way to build networks and expand networks to support multiple clients with different requirements. In order to reduce costs, enhance network flexibility, reduce spares, and provide re-configurability many service providers have migrated away from fixed wavelength transmitters, receivers, and transceivers, to wavelength tunable transmitters, receivers, and transceivers as well as wavelength dependent add-drop multiplexer, space switches etc. However, to meet the competing demands for improved performance, increased integration, reduced footprint, reduced power consumption, increased flexibility, re-configurability, and lower cost it is desirable to exploit/adopt are monolithic optical circuit technologies, hybrid optoelectronic integration, and microelectromechanical systems (MEMS).