摘要:
The intervertebral disc is avascular. With aging, endplates become occluded by calcified layers, and diffusion of nutrients and oxygen into the disc diminishes. The disc degenerates, and pain ensues. Conduits are delivered and deployed into the intervertebral disc to reestablish the exchange of nutrients and waste between the disc and bodily circulation to stop or reverse disc degeneration and relieve pain. The intervertebral disc installed with semi-permeable conduits may be used as an immuno-isolated capsule to encapsulate donor cells capable of biosynthesizing therapeutic molecules. The semi-permeable conduits establish the exchange of nutrients and therapeutic molecules between disc and bodily circulation to treat a disease without using immunosuppressive drugs.
摘要:
The intervertebral disc is avascular. With aging, endplates become occluded by calcified layers, and diffusion of nutrients and oxygen into the disc diminishes. The disc degenerates, and pain ensues. Conduits are delivered and deployed into the intervertebral disc to reestablish the exchange of nutrients and waste between the disc and bodily circulation to stop or reverse disc degeneration and relieve pain. The intervertebral disc installed with semi-permeable conduits may be used as an immuno-isolated capsule to encapsulate donor cells capable of biosynthesizing therapeutic molecules. The semi-permeable conduits establish the exchange of nutrients and therapeutic molecules between disc and bodily circulation to treat a disease without using immunosuppressive drugs.
摘要:
The intervertebral disc contains no blood vessels. Nutrients and waste are diffused mainly through adjacent vertebral bodies. As we age, calcified layers form between the disc and vertebral bodies, blocking diffusion. The disc begins to starve and flatten. The weight shifts abnormally from disc to the facet joints causing strain and back pain. Under anaerobic conditions, lactic acid is produced causing acidic irritation and unspecific pain. A U-shaped disc shunt (126) is delivered into and sealed within the degenerated disc simply by needle puncturing and withdrawal, to draw nutrients from bodily circulation into the avascular disc. A continual supply of nutrients increases biosynthesis of the water- retaining sulfated glycosaminoglycans, hence swelling pressure within the disc. The weight is re-shifted from the facet joints to the regenerated disc, alleviating back pain. With oxygen transported through the shunt, anaerobic production of lactic acid is minimized. In addition, the residual lactic acid is expelled through the U-shaped shunt during disc compression into bodily circulation to alleviate unspecific pain.