摘要:
High quality, catalyst-free boron nitride nanotubes (BNNTs) that are long, flexible, have few wall molecules and few defects in the crystalline structure, can be efficiently produced by a process driven primarily by Direct Induction. Secondary Direct Induction coils, Direct Current heaters, lasers, and electric arcs can provide additional heating to tailor the processes and enhance the quality of the BN-NTs while reducing impurities. Heating the initial boron feed stock to temperatures causing it to act as an electrical conductor can be achieved by including refractory metals in the initial boron feed stock, or providing additional heat via lasers or electric arcs. Direct Induction processes may be energy efficient and sustainable for indefinite periods of time. Careful heat and gas flow profile management may be used to enhance production of high quality BNNT at significant production rates.
摘要:
Thermoresponsive composite switch (TRCS) membranes for ion batteries include a porous scaffolding providing ion channels and a thermoresponsive polymer coating. Boron nitride nanotube (BNNT)/polymer composite TRCS membrane embodiments are preferable due to unique BNNT properties. A BNNT scaffold coated with one or more polymers may form a composite separator with tunable porosity (porosity level and pore size distribution), composition, wettability, and superior electronic isolation, oxidative/reduction resistance, and mechanical strength. The BNNT/polymer composite TRCS membrane optimizes the performance of ion batteries with tunable separator thicknesses that may be under 5μιη. Nano- scale porosity with thin separator thicknesses improves the charge density of the battery. Nano- scale architecture allows for reversible localized switching on the nano scale, in proximity to thermally stressed ion substrates. Polymer thermal expansion will decrease porosity at temperatures approaching the thermal runaway point. The BNNT polymers composite therefore functions as a TRCS.
摘要:
In the synthesis of boron nitride nanotubes (BNNTs) via high temperature, high pressure methods, a boron feedstock may be elevated above its melting point in a nitrogen environment at an elevated pressure. Methods and apparatus for supporting the boron feedstock and subsequent boron melt are described that enhance BNNT synthesis. A target holder having a boron nitride interface layer thermally insulates the target holder from the boron melt. Using one or more lasers as a heat source, mirrors may be positioned to reflect and control the distribution of heat in the chamber. The flow of nitrogen gas in the chamber may be heated and controlled through heating elements and flow control baffles to enhance BNNT formation. Cooling systems and baffle elements may provide additional control of the BNNT production process.