摘要:
The invention discloses an oriented silicon steel with excellent magnetic properties and a manufacturing method thereof. The present invention obtains the oriented silicon steel with excellent magnetic properties by controlling the area ratio of small crystal grains of D
摘要:
Disclosed is a cold forged gear steel. In addition to Fe and inevitable impurities, the cold forged gear steel further comprises the following chemical elements in mass percentage: 0.15-0.17% of C, 0.10-0.20% of Si, 1.0-1.10% of Mn, 0.80-0.90% of Cr and 0.02-0.04% of Al. Correspondingly, further disclosed is a manufacturing method for the cold forged gear steel, comprising the steps of: (1) smelting and casting; (2) heating; (3) forging or rolling; and (4) spheroidizing annealing: heating to and keeping at 750-770 °C, then cooling with a cooling rate of 5-15 °C/h to and keeping at 700-720 °C, cooling with a cooling rate of 3-12 °C/h to and keeping at 660-680 °C, and cooling with a cooling rate of 5-20 °C/h to 500 °C or below, and then tapping and cooling.
摘要:
Disclosed are a steel with controlled steel ratio and a manufacturing method therefor. The steel comprises the following components in percentage by mass: C: 0.245-0.365%, Si: 0.10-0.80%, Mn: 0.20-2.00%, P: ≤0.015%, S: ≤0.003%, Cr: 0.20-2.50%, Mo: 0.10-0.90%, Nb: 0-0.08%, Ni: 2.30-4.20%, Cu: 0-0.30%, V: 0.01-0.13%, B: 0-0.0020%, Al: 0.01-0.06%, Ti: 0-0.05%, Ca: ≤0.004%, H: ≤0.0002%, N: ≤0.013%, O: ≤0.0020%, , and the balance of Fe and inevitable impurities, wherein the components satisfy (8.57 ∗ C+1.12 ∗ Ni) ≥ 4.8% and 1.2%≤ (1.08 ∗ Mn+2.13 ∗ Cr) ≤5.6%. The steel has excellent low-temperature impact toughness and aging impact toughness at -20°C and -40°C, a rationally controlled yield ratio, and ultra-high strength, ultra-high toughness, and ultra-high plasticity, which can be used in applications such as offshore platform mooring chains, mechanical structures, and automobiles that require high strength and toughness of the steel.
摘要:
Provided is a steel comprising the following chemical composition in percentage by mass: 0.150-0.250% of C, 0.10-0.50% of Si, 0.60-1.50% of Mn, 0.30-1.20% of Cr, 0.20-0.80% of Mo, 2.00-4.00% of Ni, 0-0.10% of Nb, 0.0010-0.0050% of B, 0-0.12% of V, 0.003-0.06% of Ti, 0.01-0.08% of Al, the balance being Fe and unavoidable impurities. Also provided is a steel bar and a manufacturing method thereof. The steel bar is made from the above steel. The manufacturing method comprises the steps of smelting and casting, heating, forging or rolling, quenching, and tempering.
摘要:
A method for controlling furnace pressure of a continuous annealing furnace is disclosed. The method comprises detecting a coal gas flow volume and an air flow volume in each section by use of a coal gas flow volume detector and an air flow volume detector disposed in each section of a continuous annealing furnace, respectively, adding up the coal gas flow volume detected in each section to obtain a total input coal gas flow volume; adding up the air flow volume detected in each section to obtain a total input air flow volume, and calculating a pre-combustion gas pressure in the furnace based on the total input coal gas flow volume and the total input air flow volume; detecting compositions of the coal gas and a ratio of the coal gas to the air by use of a composition detector; detecting a pre-combustion gas temperature in the furnace by use of a thermocouple; predicting post-combustion gas compositions and a total gas volume based on chemical combustion reaction equations and based on the total input coal gas flow volume, the total input air flow volume, the coal gas compositions and the ratio of the coal gas to the air; igniting the coal gas and the air in the furnace; and detecting a post-combustion gas temperature in the furnace by use of a thermocouple; calculating a post-combustion gas pressure in the furnace based on the pre-combustion gas pressure in the furnace, pre-combustion gas temperature in the furnace and the post-combustion gas temperature in the furnace; and calculating an opening degree for an exhaust gas fan based on the pre-combustion gas pressure in the furnace and the post-combustion gas pressure in the furnace and by use of a gas increment pass algorithm, and using the opening degree to control the exhaust gas fan.
摘要:
The invention discloses an oriented silicon steel with excellent magnetic properties and a manufacturing method thereof. The present invention obtains the oriented silicon steel with excellent magnetic properties by controlling the area ratio of small crystal grains of D
摘要:
A steel for mining chain and a manufacturing method thereof, wherein the steel has compositions by weight percentage: C: 0.20~0.28%, Si: 0.01~0.40%, Mn: 0.50~1.50%, P≤0.015%, S≤0.005%, Cr : 0.30~2.00%, Ni: 0.50~2.00%, Mo: 0.10~0.80%, Cu: 0.01~0.30%, Al: 0.01~0.05%, Nb : 0.001~0.10%, V: 0.001~0.10%, H≤0.00018%, N≤0.0150%, O≤0.0020%, and the balance is Fe and inevitable impurities. The manufacturing method comprises steps of smelting, refining and vacuum treatment, casting, heating, forging or rolling, and quenching and tempering heat treatment processes. The steel in the present invention has high strength and good impact toughness, good elongation and reduction of area. The steel can also resist stress corrosion cracking and have good weather resistance, wear resistance and fatigue resistance, which can be used in scenarios where the steel having high strength and toughness is required, such as construction machinery and marine engineering.
摘要:
A method for controlling furnace pressure of a continuous annealing furnace is disclosed. The method comprises detecting a coal gas flow volume and an air flow volume in each section by use of a coal gas flow volume detector and an air flow volume detector disposed in each section of a continuous annealing furnace, respectively, adding up the coal gas flow volume detected in each section to obtain a total input coal gas flow volume; adding up the air flow volume detected in each section to obtain a total input air flow volume, and calculating a pre-combustion gas pressure in the furnace based on the total input coal gas flow volume and the total input air flow volume; detecting compositions of the coal gas and a ratio of the coal gas to the air by use of a composition detector; detecting a pre-combustion gas temperature in the furnace by use of a thermocouple; predicting post-combustion gas compositions and a total gas volume based on chemical combustion reaction equations and based on the total input coal gas flow volume, the total input air flow volume, the coal gas compositions and the ratio of the coal gas to the air; igniting the coal gas and the air in the furnace; and detecting a post-combustion gas temperature in the furnace by use of a thermocouple; calculating a post-combustion gas pressure in the furnace based on the pre-combustion gas pressure in the furnace, pre-combustion gas temperature in the furnace and the post-combustion gas temperature in the furnace; and calculating an opening degree for an exhaust gas fan based on the pre-combustion gas pressure in the furnace and the post-combustion gas pressure in the furnace and by use of a gas increment pass algorithm, and using the opening degree to control the exhaust gas fan.