摘要:
A method and apparatus of aiding a physician in locating an area to perform an ablation on patients with atrial fibrillation (AFIB) includes receiving data at a machine, from at least one device, the data including information relating to a desired location for performing an ablation, generating, by the machine, an optimal location for performing the ablation based upon the data and inputs, and providing an optimal set of ablation parameters for performing the ablation at the location output by the model, or at a location specified by the physician.
摘要:
A method is provided by an ablation contiguity engine executed by a processor. The method includes receiving at least wide area circumferential ablation points respective to tissue of an intra-body organ, estimating contiguity of the wide area circumferential ablation points with respect to locations to generate a contiguity estimation, and providing the contiguity estimation with the each of the wide area circumferential ablation points to support treatment of the tissue.
摘要:
In one embodiment, a medical system includes a catheter configured to be inserted into a chamber of a heart of a living subject, and including catheter electrodes configured to contact tissue at respective locations within the chamber of the heart, a display, and processing circuitry configured to receive signals from the catheter, and in response to the signals, sample voltage values of the signals at respective sampling times, compute respective curved three-dimensional surfaces describing electrical activity of the tissue over the catheter electrodes at respective ones of the sampling times, responsively to (a) respective positions of the respective catheter electrodes, and (b) the respective sampled voltage values indicative of electrical activity of the tissue that is sensed by the respective catheter electrodes at the respective locations at the respective sampling times, and render the respective three-dimensional surfaces to the display over time.
摘要:
In one embodiment, a medical system includes a catheter to be inserted into a chamber of a heart of a living subject, and including catheter electrodes to contact tissue at respective locations within the chamber of the heart, a display, and processing circuitry to receive signals from the catheter, and in response to the signals, sample respective voltage values of the signals at respective timing values, and render to the display respective intracardiac electrograms (IEGM) presentation strips representing electrical activity in the tissue that is sensed by the catheter electrodes at the respective locations, each of the IEGM presentation strips including a linear array of respective shapes associated with, and arranged in a temporal order of, respective ones of the timing values, fillers of the respective shapes being formatted responsively to respective ones of the sampled voltage values of a respective one of the signals sampled at respective ones of the timing values.
摘要:
A method of determining target heart ablation regions is provided which includes detecting electro-cardiogram (ECG) signals each indicating an electrical activity of a heart over time and determining, for each of the ECG signals, local activation times (LATs) each indicating a time of electrical activation for an area the heart. The method also includes generating, based on the LATs, electrical activity mapping information for displaying one or more maps representing the electrical activity of the heart and alternatively, or in addition to the electrical activity mapping information, generating spatio-temporal mapping information for one or more maps representing a spatio-temporal manifestation of the conditions indicative of cardiac arrhythmia, such as atrial fibrillation (AF). The method further includes determining a region of interest (ROI) of the heart by identifying the ROI as a region exhibiting conditions indicative of cardiac arrhythmia based on the mapping information.
摘要:
A method of determining target heart ablation regions is provided which includes detecting electro-cardiogram (ECG) signals each indicating an electrical activity of a heart over time and determining, for each of the ECG signals, local activation times (LATs) each indicating a time of electrical activation for an area the heart. The method also includes generating, based on the LATs, electrical activity mapping information for displaying one or more maps representing the electrical activity of the heart and alternatively, or in addition to the electrical activity mapping information, generating spatio-temporal mapping information for one or more maps representing a spatio-temporal manifestation of the conditions indicative of cardiac arrhythmia, such as atrial fibrillation (AF). The method further includes determining a region of interest (ROI) of the heart by identifying the ROI as a region exhibiting conditions indicative of cardiac arrhythmia based on the mapping information.
摘要:
A method and apparatus for implementing an evaluation engine implemented using a processor coupled to a memory. The evaluation engine receives effective points respective to cardiac tissue of a patient. The evaluation engine determines an anatomical structural classification for each of the effective points based on a structural segmentation for the cardiac tissue and provides the anatomical structural classification with the each of the plurality of effective points to support treatment of the cardiac tissue.
摘要:
In one embodiment, a medical system includes a catheter including electrodes, and configured to be inserted into a chamber of a heart and maneuvered among sampling sites to sample electrical activity, a display, and processing circuitry to receive signals provided by the catheter, and compute, for each sampling site, a sampling position of the catheter and respective electrode positions of the catheter electrodes, render to the display a 3D representation of the chamber including respective sampling-site markers indicating the computed sampling position of the catheter at respective ones of the sampling sites, receive a user input selecting one sampling-site marker, and update the 3D representation to include electrode markers indicating the respective electrode positions of the respective catheter electrodes while the catheter was sampling the electrical activity of the tissue at the sampling site corresponding to the selected sampling-site marker.