摘要:
An apparatus for and method of performing multi-photon light sheet microscopy (MP-LISH), combining multi-photon excited fluorescence with the orthogonal illumination of light sheet microscopy are provided. With live imaging of whole Drosophila and zebrafish embryos, the high performance of MP-LISH compared to current state-of-the-art imaging techniques in maintaining good signal and high spatial resolution deep inside biological tissues (two times deeper than one-photon light sheet microscopy), in acquisition speed (more than one order of magnitude faster than conventional two-photon laser scanning microscopy), and in low phototoxicity are demonstrated. The inherent multi-modality of this new imaging technique is also demonstrated second harmonic generation light sheet microscopy to detect collagen in mouse tail tissue. Together, these properties create the potential for a wide range of applications for MP-LISH in 4D imaging of live biological systems.
摘要:
The present invention provides for the selective covalent modification of nucleic acids with redox active moieties such as transition metal complexes. Electron donor and electron acceptor moieties are covalently bound to the ribose-phosphate backbone of a nucleic acid at predetermined positions. The resulting complexes represent a series of new derivatives that are bimolecular templates capable of transferring electrons over very large distances at extremely fast rates. These complexes possess unique structural features which enable the use of an entirely new class of bioconductors and photoactive probes.
摘要:
A biofunctionalized nanoelectromechanical device (BioNEWS) for sensing single-molecules in solution by measuring the variation in the mechanical displacement of the BioNEWS device during a binding event is provided. The biofunctionalized nanoelctromechanical device according to the invention generally comprises a nanomechanical device according to the invention generally comprises a nanomechanical mechanical resonator, a detector integral with the mechanical resonator for measuring the machanical displacement of the resonator, and electronics connected to the detector for communicating the results to a user. A system of biofunctionalzed nanoelectromechanical devices and a method for utilizing the biofunctionalized nanelectromechanical device of the present invention are also provided.
摘要:
A delivery vehicle is described that is capable of being specifically bound to and taken into targeted cells, delivering numerous physiological agents, particularly paramagnetic ions for magnetic resonance imaging (MRI) of the cells. The delivery vehicle comprises a polymeric molecule having a net positive charge complexed with another polymeric molecule having a net negative charge. Cell targeting moieties and physiological agents, including contrast agents and therapeutic agents, are attached to one or both of the polymeric molecules. In one embodiment, the polymeric molecule having a net negative charge is a nucleic acid. Thus, the delivery vehicles can be used in clinical protocols in which nucleic acids for gene therapy and agents for MRI contrast are co-transported to specific cells allowing medical imaging monitoring of nucleic acid delivery.
摘要:
The present invention relates to altering the physical and/or chemical properties of at least part of at least one tissue in the eye. In a specific embodiment, it relates to the treatment and/or prevention of myopia. An activating energy source is utilized to photopolymerize or crosslink molecules in the sclera, thereby increasing the strength of the tissue. The individual is administered a crosslinking reagent or photopolymerizable molecule that becomes associated with the membrane, which is then precisely exposed to an energy source, such as light or ultrasound.
摘要:
This disclosure relates to the field of Optical Coherence Tomography (OCT). This disclosure particularly relates to an OCT system with improved motion contrast. This disclosure particularly relates to motion contrast methods for such OCT systems. The OCT system of this disclosure may have a configuration that scans a physical object, which has a surface and a depth, with a beam of light that has a beam width and a direction; acquires OCT signals from the scan; forms at least one A-scan using the acquired OCT signals; forms at least one B-scan cluster set using the acquired OCT signals that includes at least two B-scan clusters that each include at least two B-scans. The B-scans within each B-scan cluster set are parallel to one another and parallel to the direction of the beam of light. The OCT system may have a configuration that calculates OCT motion contrast using the at least one B-scan cluster set. This OCT system may form and display an image of the physical object.
摘要:
A biofunctionalized nanoelectromechanical device (BioNEWS) for sensing single-molecules in solution by measuring the variation in the mechanical displacement of the BioNEWS device during a binding event is provided. The biofunctionalized nanoelctromechanical device according to the invention generally comprises a nanomechanical device according to the invention generally comprises a nanomechanical mechanical resonator, a detector integral with the mechanical resonator for measuring the machanical displacement of the resonator, and electronics connected to the detector for communicating the results to a user. A system of biofunctionalzed nanoelectromechanical devices and a method for utilizing the biofunctionalized nanelectromechanical device of the present invention are also provided.
摘要:
A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.