摘要:
A multi-scale finite-volume (MSFV) method to solve elliptic problems with a plurality of spatial scales arising from single or multi-phase flows in porous media is provided. Two sets of locally computed basis functions are employed. A first set of basis functions captures the small-scale heterogeneity of the underlying permeability field, and it is computed to construct the effective coarse-scale transmissibilities. A second set of bases functions is required to construct a conservative fine-scale velocity field. The method efficiently captures the effects of small scales on a coarse grid, is conservative, and treats tensor permeabilities correctly. The underlying idea is to construct transmissibilities that capture the local properties of a differential operator. This leads to a multi-point discretization scheme for a finite-volume solution algorithm. Transmissibilities for the MSFV method are preferably constructed only once as a preprocessing step and can be computed locally. Therefore, this step is well suited for massively parallel computers. Furthermore, a conservative fine-scale velocity field can be constructed from a coarse-scale pressure solution which also satisfies the proper mass balance on the fine scale. A transport problem is ideally solved iteractively in two stages. In the first stage, a fine scale velocity field is obtained from solving a pressure equation. In the second stage, the transport problem is solved on the fine cells using the fine-scale velocity field. A solution may be computed on the coarse cells at an incremental time and properties, such as a mobility coefficient, may be generated for the fine cells at the incremental time. If a predetermined condition is not met for all fine cells inside a dual coarse control volume, then the dual and fine scale basis functions in that dual coarse control volume are reconstructed.
摘要:
Computer-implemented iterative multi-scale methods and systems are provided for handling simulation of complex, highly anisotropic, heterogeneous domains. A system and method can be configured to achieve simulation of structures where accurate localization assumptions do not exist. The iterative system and method smoothes the solution field by applying line relaxation in all spatial directions. The smoother is unconditionally stable and leads to sets of tri-diagonal linear systems that can be solved efficiently, such as by the Thomas algorithm. Furthermore, the iterative smoothing procedure, for the improvement of the localization assumptions, does not need to be applied in every time step of the computation.
摘要:
A multi-scale finite-volume (MSFV) method is provided to solve elliptic problems with a plurality of spatial scales arising from single or multi-phase flows in porous media. An orthogonal 2D grid (20) of coarse grid cells (22) is used. An underlying fine grid (24) of fine grid cells (26) contains fine-scale permeability information. The method captures the effects of small scales on a coarse grid, is conservative, and treats tensor permeabilities correctly. The underlying idea is to construct transmissibilities that capture the local properties of a differential operator, which leads to a multi-point discretization scheme for a finite-volume solution algorithm.