摘要:
An application Date Delivery Service (ADDS) facilitates application data transfer between applications that may reside in a device domain (e.g., M2M/MTC devices and gateways) and applications residing in a network domain (e.g., an AS or SCS). The ADDS leverages existing 3GPP transport mechanisms, such as NAS, SMS, USSD and User Plane, and it is configured to select a transport mechanism for delivering application data based on criteria, such as application data characteristics, application/end node characteristics and availability, subscription information, policies of the network, network conditions (such as congestion, node availability) and the like.
摘要:
When a capillary network device connects to user equipment and the user equipment establishes or modifies a bearer to support traffic from the capillary device, the user equipment may request that the network provide some indication that the user equipment will not be charged for the traffic. The network may indicate to the user equipment that the flow is sponsored or that the user equipment will otherwise not be charged for the flow. Existing messages between a UE/GW, P-GW, PCRF, and an application server (AS) may be modified and new messages may be used so that the user equipment can request a guarantee of sponsorship or of non-charging and so that the AS may indicate to the user equipment that the flow is sponsored. The messaging can also be used by user equipment on its own behalf.
摘要:
The present application is directed to computer-implemented apparatus for controlling a power savings mode characteristic of a device on a network. The apparatus includes a non-transitory memory with instructions for controlling power saving mode characteristic of the device and a processor operably coupled thereto. The processor performs the step of receiving a request to update the characteristics of the device. The processor also performs the step of updating the characteristics of the device based upon the request. The processor further performs the step of sending an acknowledgment that the characteristic has been updated. The application is also directed to a computer-implemented apparatus on a network for supporting buffering and data handling for a power savings mode of a device on the network.
摘要:
The present application is directed to computer-implemented apparatus for controlling a power savings mode characteristic of a device on a network. The apparatus includes a non-transitory memory with instructions for controlling power saving mode characteristic of the device and a processor operably coupled thereto. The processor performs the step of receiving a request to update the characteristics of the device. The processor also performs the step of updating the characteristics of the device based upon the request. The processor further performs the step of sending an acknowledgment that the characteristic has been updated. The application is also directed to a computer-implemented apparatus on a network for supporting buffering and data handling for a power savings mode of a device on the network.
摘要:
Various issues with existing congestion and overload control mechanisms are recognized and described herein. Described herein, in accordance with various embodiments, are various mechanisms in which core networks, such as 3 GPP networks for example, and an M2M service layer can coordinate and share information to efficiently and intelligently manage each other's congestion and overload states.
摘要:
The Generic Bootstrapping Architecture is used in a method for assigning the bootstrapping transaction ID so that a machine-to-machine server or other device can locate and communicate with a bootstrapping server function. The bootstrapping server function assigns the bootstrapping transaction ID and updates a DNS server with an entry that maps the bootstrapping transaction ID to a network node IP Address.
摘要:
The service layer may leverage the access network infrastructure so that applications on a device may bootstrap with a machine-to-machine server without requiring provisioning beyond what is already required by the access network.
摘要:
The standards organization 3GPP is exploring new small data delivery techniques for machine-type communications (MTC). It is recognized herein that existing approaches leave the "small data" decision to the service capability server (SCS) for downlink data and to the user equipment (UE) for uplink data. A user equipment (UE) or the core network can identify the services (or flows) that should be characterized as Small Data, and can make decisions as to when to employ optimized Small Data procedures.