摘要:
An illumination system for biological applications, wherein the system employs at least one nanostructured optical fiber. The fiber is preferably wound around a support structure to form a light-source fiber portion where guided light is scattered from the fiber outer surface to form an extended light source that emits substantially uniform radiation. The bends in the light-source fiber portion are formed to enhance the amount of scattering in the nanostructured fiber. Counter-winding the at least one fiber serves to increase the uniformity of the radiation by countering the effects of decreasing emitted radiation along the length of the light-source fiber portion. Multiple fibers wound in sequence around a support structure, with each fiber coupled to the light source, can be used to form a lengthy extended source. The light-source fiber portion can be configured to suit a variety of biological chamber geometries.
摘要:
An illumination system for biological applications, wherein the system employs at least one nanostructured optical fiber. The fiber is preferably wound around a support structure to form a light-source fiber portion where guided light is scattered from the fiber outer surface to form an extended light source that emits substantially uniform radiation. The bends in the light-source fiber portion are formed to enhance the amount of scattering in the nanostructured fiber. Counter-winding the at least one fiber serves to increase the uniformity of the radiation by countering the effects of decreasing emitted radiation along the length of the light-source fiber portion. Multiple fibers wound in sequence around a support structure, with each fiber coupled to the light source, can be used to form a lengthy extended source. The light-source fiber portion can be configured to suit a variety of biological chamber geometries.
摘要:
Disclosed are refractive index profiles for total dispersion compensating optical waveguide fibers for use in high data rate, long length telecommunications systems. The optical waveguide fibers in accord with the invention provide substantially equal compensation of total dispersion over a range of wavelengths, thus facilitating wavelength division multiplexed systems. Also disclosed are spans of optical waveguide fiber that include a length of transmission fiber together with a length of the compensating fiber. The spans are joined end to end in series arrangement to form the optical waveguide fiber part of a telecommunication system.
摘要:
An optical transmission system is provided. The system includes a series of consecutive blocks of optical fiber. Each block of the system includes a first, second and third series of spans of optical fiber, where the second series of spans compensates for accumulated dispersion in the first and third series in the wavelength range of transmission. Optionally either the first or third series can be omitted.
摘要:
A Dispersion Compensation (DC) fiber and transmission line including the same. The DC fiber has a refractive index profile having a central core with a core delta (Δ1) value greater than 1.5%, a moat surrounding the central core having a moat delta (Δ2) value less negative than -0.65%, and a ring surrounding the moat having a positive ring delta (Δ3). The DC fiber's refractive index profile is selected to provide total dispersion less than -87 and greater than -167 ps/nm/km; dispersion slope more negative than -0.30 ps/nm2/km; and kappa of greater than 151 and less than 244 nm, all at 1550 nm. The DC fiber, when used in transmission lines, may provide low average residual dispersions across the C, L, C+L and S bands when such lines include transmission fibers with total dispersion between 4 and 10 ps/nm/km, and a positive dispersion slopes of less than 0.045 ps/nm2/km at 1550 nm. Further embodiments are described that include Raman pumping.
摘要:
A low slope dispersion shifted optical waveguide fiber comprising a central region and two to three annular regions between the central region and a cladding region having an effective area of less than about 60 µm2 at a wavelength of about 1550 nm, a zero-dispersion wavelength of less than about 1430 nm, a dispersion of between about 4 ps/nm/km and about 10 ps/nm/km at a wavelength of about 1550 nm, a dispersion slope of less than 0.045 ps/nm2/km at a wavelength of about 1550 nm, and a cabled cutoff wavelength of less than about 1260 nm.
摘要:
An apparatus for transporting an optical signal is provided. The apparatus includes sections of optical fiber span with at least one section negative dispersion, negative slope fiber positioned at a distance from the output. A pump light emitting device optically coupled to the optical fiber span near the output is provided for generating an amplification signal.
摘要:
An illumination system generating light having at least one wavelength within 200 nm to 2000 nm range. The system includes a light source and at least one light diffusing optical fiber with a plurality of nano-sized structures (e.g., voids). The optical fiber is coupled to the light source. The light diffusing optical fiber has a core and a cladding. The plurality of nano-sized structures is situated either within said core or at a core-cladding boundary. The optical fiber also includes an outer surface. The optical fiber is configured to scatter guided light via the nano-sized structures away from the core and through the outer surface, to form a light-source fiber portion having a length that emits substantially uniform radiation over its length, said fiber having a scattering-induced attenuation greater than 50 dB/km for the wavelength(s) within 200 nm to 2000 nm range.
摘要:
An illumination system for biological applications, wherein the system employs at least one nanostructured optical fiber. The fiber is preferably wound around a support structure to form a light-source fiber portion where guided light is scattered from the fiber outer surface to form an extended light source that emits substantially uniform radiation. The bends in the light-source fiber portion are formed to enhance the amount of scattering in the nanostructured fiber. Counter-winding the at least one fiber serves to increase the uniformity of the radiation by countering the effects of decreasing emitted radiation along the length of the light-source fiber portion. Multiple fibers wound in sequence around a support structure, with each fiber coupled to the light source, can be used to form a lengthy extended source. The light-source fiber portion can be configured to suit a variety of biological chamber geometries.