摘要:
An apparatus for supporting a workpiece, such as a yoke having a body portion and a pair of opposed yoke arms, during a magnetic pulse welding operation includes a lower jaw, an upper jaw, and a support pin extending therebetween. During the magnetic pulse welding operation, the lower and upper jaws of the support apparatus engage the opposed yoke arms, and the support pin extends through respective openings formed through the opposed yoke arms. The support apparatus can also include a counter die that is disposed between the lower jaw and the upper jaw and has an arcuate recess formed therein that receives the outer portions of the opposed yoke arms therein. Lastly, the support apparatus can further include a pair of positioning rails that engage the body portion of the yoke. As a result, the support apparatus prevents deformation of the opposed yoke arms and absorbs shock waves that can be propagated through the yoke during the magnetic pulse welding operation.
摘要:
A magnetic pulse welding operation is performed to secure first and second metallic components together, such as a yoke and a driveshaft tube in a vehicular driveshaft assembly. The yoke includes a first portion, such as a body portion, and a second portion, such as a pair of opposed yoke arms. The end of the driveshaft tube is disposed co-axially about the body portion of the yoke. An inductor axially is positioned co-axially about the overlapping portions of the end of the driveshaft tube and the body portion of the yoke. The inductor is energized to perform a magnetic pulse welding operation to secure the end of the driveshaft tube to the body portion of the yoke without generating a significant flow of air toward the inductor.
摘要:
The performance of a magnetic pulse forming or welding process is monitored by positioning a deformation member relative to an inductor coil of the apparatus, then energizing the inductor coil to exert a force thereon. The deformation member can be a plastically deformable tube, and the amount of such plastic deformation that occurs when the inductor coil is energized can be measured to determine the magnitude of the force that is generated by the inductor coil. Alternatively, the deformation member can be an elastically deformable body, and the amount of such elastic deformation that occurs when the inductor coil is energized can be measured to determine the magnitude of the force that is generated by the inductor coil. In both instances, the magnitude of the force that is generated by the inductor coil is representative of the performance of the magnetic pulse forming or welding process and can be used, when necessary, to adjust the parameters of the magnetic pulse forming or welding processes to maintain consistency in the operation thereof.
摘要:
A magnetic pulse welding operation is performed to secure first and second metallic components together, such as a yoke and a driveshaft tube in a vehicular driveshaft assembly. The yoke includes a first portion, such as a body portion, and a second portion, such as a pair of opposed yoke arms, that are separated by a bridge portion. The end of the driveshaft tube is disposed co-axially about the body portion of the yoke, and a magnetic pulse welding operation is performed to secure the end of the driveshaft tube to the body portion of the yoke. The bridge portion can be defined by a groove formed in either the outer surface or the inner surface of the yoke. The groove may have side portions that extend either generally perpendicular or are angled or tapered relative to an axis of rotation of the yoke. If desired, a pair of opposed, semi-circular grooves may be formed in the yoke to define the bridge portion. The bridge portion allows the yoke arms to be elastically deformed and can also limit the propagation of shock waves through the yoke that can result from the performance of the magnetic pulse welding operation.