摘要:
A conferencing server (100) receives incoming bitstreams (I1, 12, 13, 14, 15) carrying media data from respective conferencing endpoints (110, 120, 130, 140, 150); receives a mixing strategy (M) specifying properties of at least one outgoing bitstream (O1 02, 03, 04, 05) and requiring at least one additive media mixing step; and supplies at least one outgoing bitstream by executing, in a processor (103) and a memory (102) with a plurality of memory spaces, a run list of operations selected from a predefined collection of primitives and realizing the received mixing strategy. A pre-processor (104) in the server derives said run list repeatedly and dynamically while taking into consideration determined momentary activity in each incoming bitstream. In embodiments, the run list may be derived by (a) pruning of an initial run list, (b) constrained or non-constrained minimization of a cost function, or (c) automatic code generation.
摘要:
A conferencing server (100) receives incoming bitstreams (I1, 12, 13, 14, 15) carrying media data from respective conferencing endpoints (110, 120, 130, 140, 150); receives a mixing strategy (M) specifying properties of at least one outgoing bitstream (O1 02, 03, 04, 05) and requiring at least one additive media mixing step; and supplies at least one outgoing bitstream by executing, in a processor (103) and a memory (102) with a plurality of memory spaces, a run list of operations selected from a predefined collection of primitives and realizing the received mixing strategy. A pre-processor (104) in the server derives said run list repeatedly and dynamically while taking into consideration determined momentary activity in each incoming bitstream. In embodiments, the run list may be derived by (a) pruning of an initial run list, (b) constrained or non-constrained minimization of a cost function, or (c) automatic code generation.
摘要:
An audio encoder and an audio decoder are based on a combination of two audio channels (201, 202) to obtain a first combination signal (204) as a mid signal and a residual signal (205) which can be derived using a predicted side signal derived from the mid signal. The first combination signal and the prediction residual signal are encoded (209) and written (212) into a data stream (213) together with the prediction information (206) derived by an optimizer (207) based on an optimization target (208). A decoder uses the prediction residual signal, the first combination signal and the prediction information to derive a decoded first channel signal and a decoded second channel signal. In an encoder example or in a decoder example, a real-to-imaginary transform can be applied for estimating the imaginary part of the spectrum of the first combination signal. For calculating the prediction signal used in the derivation of the prediction residual signal, the real-valued first combination signal is multiplied by a real portion of the complex prediction information and the estimated imaginary part of the first combination signal is multiplied by an imaginary portion of the complex prediction information.
摘要:
An audio encoder and an audio decoder are based on a combination of two audio channels (201, 202) to obtain a first combination signal (204) as a mid signal and a residual signal (205) which can be derived using a predicted side signal derived from the mid signal. The first combination signal and the prediction residual signal are encoded (209) and written (212) into a data stream (213) together with the prediction information (206) derived by an optimizer (207) based on an optimization target (208). A decoder uses the prediction residual signal, the first combination signal and the prediction information to derive a decoded first channel signal and a decoded second channel signal. In an encoder example or in a decoder example, a real-to-imaginary transform can be applied for estimating the imaginary part of the spectrum of the first combination signal. For calculating the prediction signal used in the derivation of the prediction residual signal, the real-valued first combination signal is multiplied by a real portion of the complex prediction information and the estimated imaginary part of the first combination signal is multiplied by an imaginary portion of the complex prediction information.
摘要:
An audio encoder and an audio decoder are based on a combination of two audio channels (201, 202) to obtain a first combination signal (204) as a mid signal and a residual signal (205) which can be derived using a predicted side signal derived from the mid signal. The first combination signal and the prediction residual signal are encoded (209) and written (212) into a data stream (213) together with the prediction information (206) derived by an optimizer (207) based on an optimization target (208). A decoder uses the prediction residual signal, the first combination signal and the prediction information to derive a decoded first channel signal and a decoded second channel signal. In an encoder example or in a decoder example, a real-to-imaginary transform can be applied for estimating the imaginary part of the spectrum of the first combination signal. For calculating the prediction signal used in the derivation of the prediction residual signal, the real-valued first combination signal is multiplied by a real portion of the complex prediction information and the estimated imaginary part of the first combination signal is multiplied by an imaginary portion of the complex prediction information.
摘要:
An audio encoder and an audio decoder are based on a combination of two audio channels (201, 202) to obtain a first combination signal (204) as a mid signal and a residual signal (205) which can be derived using a predicted side signal derived from the mid signal. The first combination signal and the prediction residual signal are encoded (209) and written (212) into a data stream (213) together with the prediction information (206) derived by an optimizer (207) based on an optimization target (208). A decoder uses the prediction residual signal, the first combination signal and the prediction information to derive a decoded first channel signal and a decoded second channel signal. In an encoder example or in a decoder example, a real-to-imaginary transform can be applied for estimating the imaginary part of the spectrum of the first combination signal. For calculating the prediction signal used in the derivation of the prediction residual signal, the real-valued first combination signal is multiplied by a real portion of the complex prediction information and the estimated imaginary part of the first combination signal is multiplied by an imaginary portion of the complex prediction information.
摘要:
An audio encoder and an audio decoder are based on a combination of two audio channels (201, 202) to obtain a first combination signal (204) as a mid signal and a residual signal (205) which can be derived using a predicted side signal derived from the mid signal. The first combination signal and the prediction residual signal are encoded (209) and written (212) into a data stream (213) together with the prediction information (206) derived by an optimizer (207) based on an optimization target (208). A decoder uses the prediction residual signal, the first combination signal and the prediction information to derive a decoded first channel signal and a decoded second channel signal. In an encoder example or in a decoder example, a real-to-imaginary transform can be applied for estimating the imaginary part of the spectrum of the first combination signal. For calculating the prediction signal used in the derivation of the prediction residual signal, the real-valued first combination signal is multiplied by a real portion of the complex prediction information and the estimated imaginary part of the first combination signal is multiplied by an imaginary portion of the complex prediction information.
摘要:
A method and a device for processing a stereo signal obtained from an encoder, which codes an N-channel audio signal into spatial parameters (P) and a stereo down-mix comprising first and second stereo signals (L 0 , R 0 ). A first signal and a third signal are added in order to obtain a first output signal (L 0w ), wherein the first signal QL 0wL ) comprises the first stereo signal (L 0 ) modified by a first complex function (g 1 ), and the third signal (L 0wR ) comprises the second stereo signal (R 0 ) modified by a third complex function (g 3 ). A second signal and a fourth signal are added to obtain a second output signal (R 0w ). The fourth signal (R 0wR ) comprises the second stereo signal (R 0 ) modified by a fourth complex function (g 4 ), and the second signal (R 0wL ) comprises the first stereo signal (L 0 ) modified by a second complex function (g 2 ). The complex functions (g 1 ,g 2 ,g 3 ,g 4 ) are functions of the spatial parameters (P) and are chosen such that an energy value of the difference (L 0wL -P 0wL ) between the first signal and the second signal is larger than or equal to the energy value of the sum (L 0wL +R 0wL ) of the first and the second signal and the energy value of the difference (R 0wR -L 0wR ) between the fourth signal and the third signal is larger than or equal to the energy value of the sum (R 0wR +L 0wR ) of the fourth signal and the third signal.
摘要:
A parameter transformer generates level parameters, indicating an energy relation between a first and a second audio channel of a multi-channel audio signal associated to a multi-channel loudspeaker configuration. The level parameter are generated based on object parameters for a plurality of audio objects associated to a down-mix channel, which is generated using object audio signals associated to the audio objects. The object parameters comprise an energy parameter indicating an energy of the object audio signal. To derive the coherence and the level parameters, a parameter generator is used, which combines the energy parameter and object rendering parameters, which depend on a desired rendering configuration.