摘要:
A cermet composition represented by the formula (PQ)(RS)X comprising: a ceramic phase (PQ), a binder phase (RS) and X wherein X is at least one member selected from the group consisting of an oxide dispersoid E, an intermetallic compound F and a derivative compound G wherein said ceramic phase (PQ) is dispersed in the binder phase (RS) as particles of diameter in the range of about 0.5 to 3000 microns, and said X is dispersed in the binder phase (RS) as particles in the size range of about 1 nm to 400 nm.
摘要:
Provided are coated oil and gas well production devices and methods of making and using such coated devices. In one form, the coated oil and gas well production device includes an oil and gas well production device including one or more bodies, and a coating on at least a portion of the one or more bodies, wherein the coating is chosen from an amorphous alloy, a heat-treated electroless or electro plated based nickel-phosphorous composite with a phosphorous content greater than 12 wt %, graphite, MoS2, WS2, a fullerene based composite, a boride based cermet, a quasicrystalline material, a diamond based material, diamond-like-carbon (DLC), boron nitride, and combinations thereof. The coated oil and gas well production devices may provide for reduced friction, wear, corrosion, erosion, and deposits for well construction, completion and production of oil and gas.
摘要:
A cermet composition represented by the formula (PQ)(RS) comprising : a ceramic phase (PQ) and binder phase (RS) wherein, P is at least one metal selected from the group consisting of Group IV, Group V, Group VI elements, Q is boride, R is selected from the group consisting of Fe, Ni, Co, Mn and mixtures thereof, S comprises at least one element selected from Cr, Al, Si and Y.
摘要:
The invention includes a cermet composition represented by the formula (PQ)(RS) comprising: a ceramic phase (PQ) and a binder phase (RS) wherein, P is a metal selected from the group consisting of Si, Mn, Fe, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W and mixtures thereof, Q is nitride, R is a metal selected from the group consisting of Fe, Ni, Co, Mn and mixtures thereof, S consists essentially of at least one element selected from Cr, Al, Si, and Y, and at least one reactive wetting aliovalent element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W and mixtures thereof.
摘要:
The present invention is directed to a method for protecting metal surfaces in oil & gas exploration and production, refinery and petrochemical process applications subject to solid particulate erosion at temperatures of up to 100O0C. The method includes the step of providing the metal surfaces in such applications with a hot erosion resistant cermet lining or insert, wherein the cermet lining or insert includes a) about 30 to about 95 vol% of a ceramic phase, and b) a metal binder phase, wherein the cermet lining or insert has a HEAT erosion resistance index of at least 5.0 and a KjC fracture toughness of at least 7.0 MPa-m1/2. The metal surfaces may also be provided with a hot erosion resistant cermet coating having a HEAT erosion resistance index of at least 5.0. Advantages provided by the method include, inter alia, outstanding high temperature erosion and corrosion resistance in combination with outstanding fracture toughness, as well as outstanding thermal expansion compatibility to the base metal of process units. The method finds particular application for protect¬ ing process vessels, transfer lines and process piping, heat exchangers, cyclones, slide valve gates and guides, feed nozzles, aeration nozzles, thermo wells, valve bodies, internal risers, deflection shields, sand screen, and oil sand mining equipment.
摘要:
The invention includes a cermet composition represented by the formula (PQ)(RS) comprising: a ceramic phase (PQ) and a binder phase (RS) wherein, P is a metal selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Mn and mixtures thereof, Q is carbonitride, R is a metal selected from the group consisting of Fe, Ni, Co, Mn and mixtures thereof, S comprises at least one element selected from Cr, Al, Si and Y.
摘要:
Cermets are provided in which a substantially stoichiometric metal carbide ceramic phase along with a reprecipitated metal carbide phase, represented by the formula MXCY, is dispersed in a metal binder phase. In MxCy M is Cr, Fe, Ni, Co, Si, Ti, Zr, Hf, V, Nb, Ta, Mo or mixtures thereof, x and y are whole or fractional numerical values with x ranging from 1 to 30 and y from 1 to 6. These cermets are particularly useful in protecting surfaces from erosion and corrosion at high temperatures.
摘要:
A cermet composition and method for its manufacture represented by the formula (PQ) (RS) comprising: a ceramic phase (PQ) and a binder phase (RS) wherein, P is a metal selected from the group consisting of Al, Si, Mg, Ca, Y, Fe, Mn, Group IV, Group V, Group VI elements, and mixtures thereof, Q is oxide, R is a base metal selected from the group consisting of Fe, Ni Co, Mn and mixtures thereof, S consists essentially of at least one element selected from Cr, Al and Si and at least one reactive wetting element selected from the group consisting of Ti, Zr, Hf, Ta, Sc, Y, La, and Ce.
摘要:
Cermets are provided in which the ceramic phase is selected from the group consisting of Cr23C6, Cr7C3, Cr3C2 and mixtures thereof. The binder phase is selected from certain specified Ni/Cr alloys and certain Fe/Ni/Cr alloys. These cermets are particularly useful in protecting surfaces from erosion at high temperatures.
摘要:
A cermet composition represented by the formula (PQ)(RS)X comprising: a ceramic phase (PQ), a binder phase (RS) and X wherein X is at least one member selected from the group consisting of an oxide dispersoid E, an intermetallic compound F and a derivative compound G wherein said ceramic phase (PQ) is dispersed in the binder phase (RS) as particles of diameter in the range of about 0.5 to 3000 microns, and said X is dispersed in the binder phase (RS) as particles in the size range of about 1 nm to 400 nm.