摘要:
Provided are coated sleeved oil and gas well production devices and methods of making and using such coated sleeved devices. In one form, the coated sleeved oil and gas well production device includes one or more cylindrical bodies, one or more sleeves proximal to the outer diameter or inner diameter of the one or more cylindrical bodies, hardbanding on at least a portion of the exposed outer surface, exposed inner surface, or a combination of both exposed outer or inner surface of the one or more sleeves, and a coating on at least a portion of the inner sleeve surface, the outer sleeve surface, or a combination thereof of the one or more sleeves. The coating includes one or more ultra-low friction layers, and one or more buttering layers interposed between the hardbanding and the ultra-low friction coating. The coated sleeved oil and gas well production devices may provide for reduced friction, wear, erosion, corrosion, and deposits for well construction, completion and production of oil and gas.
摘要:
Provided are coated sleeved oil and gas well production devices and methods of making and using such coated sleeved devices. In one form, the coated sleeved oil and gas well production device includes one or more cylindrical bodies, one or more sleeves proximal to the outer diameter or inner diameter of the one or more cylindrical bodies, hardbanding on at least a portion of the exposed outer surface, exposed inner surface, or a combination of both exposed outer or inner surface of the one or more sleeves, and a coating on at least a portion of the inner sleeve surface, the outer sleeve surface, or a combination thereof of the one or more sleeves. The coating includes one or more ultra-low friction layers, and one or more buttering layers interposed between the hardbanding and the ultra-low friction coating. The coated sleeved oil and gas well production devices may provide for reduced friction, wear, erosion, corrosion, and deposits for well construction, completion and production of oil and gas.
摘要:
Provided are coated oil and gas well production devices and methods of making and using such coated devices. In one form, the coated oil and gas well production device includes an oil and gas well production device including one or more bodies, and a coating on at least a portion of the one or more bodies, wherein the coating is chosen from an amorphous alloy, a heat-treated electroless or electro plated based nickel-phosphorous composite with a phosphorous content greater than 12 wt %, graphite, MoS2, WS2, a fullerene based composite, a boride based cermet, a quasicrystalline material, a diamond based material, diamond-like-carbon (DLC), boron nitride, and combinations thereof. The coated oil and gas well production devices may provide for reduced friction, wear, corrosion, erosion, and deposits for well construction, completion and production of oil and gas.
摘要:
Provided are low friction coatings with improved abrasion, wear resistance and methods of making such coatings. In one form, the coating includes: i) an under layer selected from the group consisting of CrN, TiN, TiAlN, TiAlVN, TiAlVCN, TiSiN, TiSiCN, TiAlSiN and combinations thereof, wherein the under layer ranges in thickness from 0.1 to 100 μm, ii) an adhesion promoting layer selected from the group consisting of Cr, Ti, Si, W, CrC, TiC, SiC, WC, and combinations thereof, wherein the adhesion promoting layer ranges in thickness from 0.1 to 50 μm and is contiguous with a surface of the under layer, and iii) a functional layer selected from the group consisting of a fullerene based composite, a diamond based material, diamond-like-carbon and combinations thereof, wherein the functional layer ranges from 0.1 to 50 μm and is contiguous with a surface of the adhesion promoting layer.
摘要:
Provided are methods to make a drilling tool with low friction coatings to reduce balling and friction, In one form, the method includes providing one or more drilling tool components with specified locations for fitting cutters, inserts, bearings, rollers, additional non-coated components, or combinations thereof; cleaning the one or more drilling tool components; applying masking for fitting cutters, inserts, bearings, rollers, additional non-coated components or combinations thereof; applying a multi-layer low friction coating to the cleaned specified locations; removing the masking from the cleaned and coated specified locations of the one or more drilling components; inserting cutters and inserts and assembling moving parts to the cleaned and coated specified locations of the one or more drilling tool components; and assembling the one or more drilling tool components to form a drilling tool.
摘要:
Provided are drill stem assemblies with ultra-low friction coatings for subterraneous drilling operations. In one form, the coated drill stem assemblies for subterraneous rotary drilling operations include a body assembly with an exposed outer surface including a drill string coupled to a bottom hole assembly or a coiled tubing coupled to a bottom hole assembly and an ultra-low friction coating on at least a portion of the exposed outer surface of the body assembly, wherein the coefficient of friction of the ultra-low friction coating is less than or equal to 0.15. The coated drill stem assemblies disclosed herein provide for reduced friction, vibration (stick-slip and torsional), abrasion and wear during straight hole or directional drilling to allow for improved rates of penetration and enable ultra-extended reach drilling with existing top drives.
摘要:
Provided are steel structures including structural steel components bonded by friction stir weldments with advantageous microstructures to yield improved weldment strength and weldment toughness. In one form of the present disclosure, the steel structure includes: two or more structural steel components produced by conventional melting or secondary refining practices and friction stir weldments bonding faying surfaces of the components together, wherein the friction stir weldments have a prior austenite grain size of between 5 and 60 microns and less than 50 vol% of martensite-austenite constituent, and wherein the friction stir weldment strength is greater than the starting structural steel and the friction stir weldment toughness as measured by the crack tip opening displacement test at less than or equal to O°C is greater than or equal to 0.05 mm or by the Charpy V-notch impact test at less than or equal to O°C is greater than 40 J.
摘要:
The present invention is directed to a process for producing pearlite from an iron containing article comprising the steps of, (a) heating an iron containing article comprising at least 50 wt % iron for a time and at a temperature sufficient to convell at least a portion of said iron from a ferritic structure to an austenitic structure, (b) exposing said austenitic structure, for a time sufficient and at a temperature of about 727 to about 900°C, to a carbon supersaturated environment to diffuse carbon into said austenitic structure and ( c ) cooling said iron containing article to form a continuous pearlite structure.