Abstract:
Methods are provided for producing lubricant base oils using a combination of catalytic and solvent processing. By using a combination of catalytic processing for feed conversion and dewaxing while using solvent processing for removal of aromatics, Group II and Group III lubricant base oils can be produced using low pressure catalytic processes.
Abstract:
The invention relates to a method for producing a diesel fuel. The method allows for separate control of hydrotreatment and dewaxing conditions for producing the diesel fuel while reducing or minimizing additional equipment costs.
Abstract:
A process for the removal of sulfur compounds and benzene of a catalytically cracked petroleum naphtha comprising benzene, organic sulfur compounds and olefins, by fractionating the cracked naphtha into a relatively low boiling range, olefinic, light catalytic naphtha (LCN) and an olefinic heavy catalytic naphtha (HCN) which boils above the range of the LCN the boiling ranges of the LCN and the HCN being defined by a cut point selected to maintain most of the benzene in the cracked naphtha in the LCN together with olefins in the boiling range of the LCN. The LCN is subjected to an optional non-hydrogenative desulfurization step followed by a fixed bed alkylation step in which the benzene in the LCN is alkylated with the olefins contained in this fraction. The HCN is treated by a similar an alkylation step using the olefins contained in this fraction to alkylate the sulfur compounds, forming alkylated products which boil above the gasoline boiling range. The LCN and HCN are then fractionated to remove light ends and higher boiling sulfur reaction products (disulfides, alkylated thiophenes) boiling above the gasoline boiling range.
Abstract:
A method of rejuvenating a deactivated molecular sieve catalyst, deactivated by use in an olefin oligomerization or aromatics alkylation process, which method comprises contacting the deactivated catalyst with a stream of rejuvenation gas comprising a hydrocarbon product fraction from the process at an elevated temperature and pressure for a time sufficient to effect an increase in catalytic activity of the deactivated catalyst.
Abstract:
A process for producing high yields of higher quality (API Group II, Group III') lubricating oil basestock fractions which allows the production of two or more types of high quality lubes in continuous mode (no blocked operation mode) without transition times and feed or intermediate product tankage segregation. Two consecutive hydroprocessing steps are used: the first step processes a wide cut feed at a severity needed to match heavy oil lube properties. The second step hydroprocesses a light oil after fractionation of the liquid product from the first step at a severity higher than for the heavy oil fraction. The two hydroprocessing steps will normally be carried out in separate reactors but they may be combined in a single reactor which allows for the two fractions to be processed with different degrees of severity.
Abstract:
A process for the regeneration of materials used in the guard beds preceding the reactors used in an olefin conversion process which converts olefinic refinery streams to higher boiling hydrocarbon products by polymerization (oligomerization) or alkylation of aromatics including benzene. Products of the process may include olefin oligomers and alkylaromatics in the gasoline boiling range as well as alkylaromatic petrochemicals such as cumene and ethylbenzene. The process is integrated with the olefin conversion process to ensure continuous operation of the olefin conversion without sending the feedstock containing the contaminant(s) to the reactor. The process uses reaction products from the olefin conversion process to regenerate the guard bed material and so is economically attractive since it does not require the use of separate purge, regeneration feed and separation systems. A plurality of guard beds is used, each containing a material which removes catalyst poisons. The guard beds are operated on a swing system in which one or more beds is kept on stream to remove the contaminant(s) while one or more of the remaining beds is being purged or regenerated. In this way, continuity of operation is assured. The regeneration medium is a product stream from the olefin conversion process.
Abstract:
A modular catalyst bed support can be used to increase the number of catalyst beds available in a reactor. The modular catalyst bed support can include a lattice with a plurality of lattice openings and modules inserted into the lattice openings. The modular catalyst bed support can rest on top of an underlying catalyst bed, which can reduce or eliminate the need for attachment of the modular catalyst bed support to the walls of the reactor.
Abstract:
A modular catalyst bed support can be used to increase the number of catalyst beds available in a reactor. The modular catalyst bed support can include a lattice with a plurality of lattice openings and modules inserted into the lattice openings. The modular catalyst bed support can rest on top of an underlying catalyst bed, which can reduce or eliminate the need for attachment of the modular catalyst bed support to the walls of the reactor.