摘要:
Initial speeds in the move commands for respective control axes at servo-on are determined according to parameter setting, or the comparative relationship or difference in speed among the actual speeds of the control axes so that difference in position between the control axes does not increase as the move commands are executed after the servo-on. The actual speeds of the control axes are set as initial speeds in the move commands, and a target axis is specified on the basis of the comparative relationship among their actual speeds and the other control axes are accelerated or decelerated at the acceleration or deceleration rate specified in the move commands to attain the position and speed of the target axis, so that differences in position and speed among the control axes are gradually decreased as the move commands are executed after the servo-on, thereby preventing abrupt speed changes and suppressing mechanical shocks.
摘要:
A reference variable (x) having a linear relationship with the angular position of a master axis is set, and a correspondence between this reference variable (x) and the displacement (y) of a slave axis is stored in a data table (DT). One execution stage (e.g. stage 1) is specified by setting a starting reference variable (0) and an ending reference variable (150) from this data table (DT). A desired sequence is assigned to a plurality of execution stages (1 to 3) thus specified. The reference variable (x) corresponding to the angular position of the master axis is determined, slave axis displacement data (y) corresponding to the reference variable (x) is read out, and the slave axis is positioned in accordance with the position of the master axis on the basis of this displacement data (y).
摘要:
A synchronous controller capable of gently changing a synchronous multiplying factor and setting the gentleness of changing of the synchronous multiplying factor without shocking a machine. A block for gently changing the synchronous multiplying factor is added between blocks before and after the changing of the synchronous multiplying factor. Synchronous multiplying factors a and b before and after changing of the synchronous multiplying factor designated in the added block, a motion amount p of master axis, a motion amount of a slave axis, and a residual motion amount v of the master axis after the completion of changing the synchronous multiplying factor (or a preliminary motion amount u of the master axis from the start of motion of the block concerned to a position for the start of changing of the synchronous multiplying factor) are read out. A gradient of changing the synchronous multiplying factor and the preliminary motion amount u (or the residual motion amount v) are obtained based on these data. The slave axis is controlled based on the motion amounts u and v and the gradient of changing the synchronous multiplying factor. The synchronous multiplying factor is changed so gently that the machine cannot be shocked. The synchronous multiplying factor gradient can be settled depending on the designated data p, q and v (or u).
摘要:
A method of and apparatus for synchronous control of a leading element (7) and a follower element (8) in which synchronism is started smoothly and a mechanical shock at the start of synchronism is reduced. When the follower element is started to move to be synchronized with the leading element, motion of the follower element is started before the follower element reaches a start position of the synchronism, and brought into synchronism with the leading element at the start position of synchronism. A positional relationship between the leading element and the follower element in synchronism, and a start position for starting the synchronism of the follower element and the leading element is set. An acceleration control of the follower element is performed between a motion start position preceding the start position of the synchronism and the start position of the synchronism. A position control of the follower element is performed based on position data of the leading element and the set positional relationship after the follower element reaches the start position of the synchronism.
摘要:
A synchronous controller capable of gently changing a synchronous multiplying factor and setting the gentleness of changing of the synchronous multiplying factor without shocking a machine. A block for gently changing the synchronous multiplying factor is added between blocks before and after the changing of the synchronous multiplying factor. Synchronous multiplying factors a and b before and after changing of the synchronous multiplying factor designated in the added block, a motion amount p of master axis, a motion amount of a slave axis, and a residual motion amount v of the master axis after the completion of changing the synchronous multiplying factor (or a preliminary motion amount u of the master axis from the start of motion of the block concerned to a position for the start of changing of the synchronous multiplying factor) are read out. A gradient of changing the synchronous multiplying factor and the preliminary motion amount u (or the residual motion amount v) are obtained based on these data. The slave axis is controlled based on the motion amounts u and v and the gradient of changing the synchronous multiplying factor. The synchronous multiplying factor is changed so gently that the machine cannot be shocked. The synchronous multiplying factor gradient can be settled depending on the designated data p, q and v (or u).
摘要:
When a servomotor (control axis) e.g. in a die-casting machine is coasting and rotating in a servo-off state in which no current is applied to the servomotor, this servo-off state is switched over to a servo-on state in which current is applied to the servomotor, and a position control and a speed control are started. An actual speed in servo-on state is obtained in speed obtaining means by a position/speed detector. Position command means obtains a command movement amount using the actual speed as an initial speed. A position deviation amount corresponding to the actual speed is calculated, a command movement amount, a position deviation amount, and a position deviation amount remaining in a position deviation counter in servo-on state with the sign thereof reversed are added to each other as a command amount to the position deviation counter. Thus, abrupt speed changes can be avoided, when position control is started.