Abstract:
A low viscosity polymer having a linear or branched backbone derived from farnesene monomers and at least one terminal-end functionalized with a hydroxyl group. This polymer may be further hydrogenated to reduce unsaturation and acrylated, such that it may be incorporated into a LOCA composition. The LOCA composition may be used in a laminated screen assembly, such as a touch screen, for electronic devices by adhering the LOCA composition between an optically transparent layer, such as a cover glass, and a display. The cured LOCA composition has a refractive index similar to the optically transparent layer. A method of making the low viscosity polymer for the LOCA composition includes anionically polymerizing farnesene monomers, quenching a living end of the polymer to provide the hydroxyl-terminated polymer; hydrogenating the hydroxyl-terminated polymer; and reacting the at least partially saturated hydroxyl-terminated polymer with at least one reagent to provide an acrylate terminated hydrogenated polymer.
Abstract:
A farnesene polymer is provided having a glass transition temperature greater than zero degrees Celsius that is obtained by combining a farnesene monomer and a solvent and optionally adding one or more vinyl aromatic comonomers to provide a monomer feed and polymerizing the monomer feed with a Friedel-Crafts catalyst. The farnesene polymer may be included as a resin in a rubber composition for tire applications.
Abstract:
A composition is provided for making a polyurethane that may be incorporated in various products, such as a sealant, a coating, a caulk, an electric potting compound, a membrane, a sponge, a foam, an adhesives, and a propellant binder. The composition includes one or more polyols, one or more isocyanate-group containing compounds having an isocyanate group functionality of at least two, and optionally one or more chain extenders. At least one of the polyols is a farnesene-based polyol having a number average molecular weight less than or equal to 100,000 g/mol and a viscosity at 25° C. less than 10,000 cP. The farnesene-based polyol may be a homopolymer or a copolymer of farnesene. The composition may also comprise additional polyols, such as a polyol of a homopolymer or copolymer of a polydiene. Methods of preparing a polyurethane are also provided.