摘要:
The invention utilizes low complexity estimates of complex functions to perform combinatorial coding of signal vectors. The invention disregards the accuracy of such functions as long as certain sufficient properties are maintained. The invention in turn may reduce computational complexity of certain coding and decoding operations by two orders of magnitude or more for a given signal vector input.
摘要:
Improved methods for coding an ensemble of pulse vectors utilize statistical models (i.e., probability models) for the ensemble of pulse vectors, to more efficiently code each pulse vector of the ensemble. At least one pulse parameter describing the non-zero pulses of a given pulse vector is coded using the statistical models and the number of non-zero pulse positions for the given pulse vector. In some embodiments, the number of non-zero pulse positions are coded using range coding. The total number of unit magnitude pulses may be coded using conditional (state driven) bitwise arithmetic coding. The non-zero pulse position locations may be coded using adaptive arithmetic coding. The non-zero pulse position magnitudes may be coded using probability-based combinatorial coding, and the corresponding sign information may be coded using bitwise arithmetic coding. Such methods are well suited to coding non-independent-identically-distributed signals, such as coding video information.
摘要:
Improved methods for coding an ensemble of pulse vectors utilize statistical models (i.e., probability models) for the ensemble of pulse vectors, to more efficiently code each pulse vector of the ensemble. At least one pulse parameter describing the non-zero pulses of a given pulse vector is coded using the statistical models and the number of non-zero pulse positions for the given pulse vector. In some embodiments, the number of non-zero pulse positions are coded using range coding. The total number of unit magnitude pulses may be coded using conditional (state driven) bitwise arithmetic coding. The non-zero pulse position locations may be coded using adaptive arithmetic coding. The non-zero pulse position magnitudes may be coded using probability-based combinatorial coding, and the corresponding sign information may be coded using bitwise arithmetic coding. Such methods are well suited to coding non-independent-identically-distributed signals, such as coding video information.
摘要:
A encoder/decoder architecture that uses an arithmetic encoder to encode the MSB portions of the output of a Factorial Pulse Coder, that encodes the output of a first-level source encoder, e.g., MDCT. Sub-parts (e.g., frequency bands) of portions (e.g., frames) of the signal are suitably sorted in increasing order based on a measure related to signal energy (e.g., signal energy itself). In a system that overlays Arithmetic Encoding on Factorial Pulse coding results in bits re-allocated to bands with higher signal energy content yielding higher signal quality and higher bit utilization efficiency.