摘要:
A capacitor for powering an implantable medical device is described. The capacitor includes a casing having contoured surfaces to more closely conform to body contours. This means that the anode housed in the casing must also have a contoured shape substantially matching that of the casing. Accordingly, the anode is comprised of a pressed pellet having a surrounding peripheral edge extending to spaced-apart first and second major face walls. An anode lead wire comprises an embedded portion extending into the anode pellet. First and second channel-shaped recesses aligned with each other extend into the anode pellet from the first and second major face walls to intersect with the embedded lead wire portion. The first and second channel-shaped recesses also extend to opposed locations at the surrounding peripheral edge of the anode pellet. The anode pellet is bent at the aligned first and second channel-shaped recesses to provide a right anode pellet portion electrically connected to a left anode pellet portion by the embedded lead wire portion. The thusly contoured anode pellet has an anatomical shape that matches that of the contoured casing to provide an implantable capacitor that is volumetrically efficient.
摘要:
An electrochemical cell comprising a conductive casing housing an electrode assembly provided with a stack holder surrounding the electrode assembly is described. The stack holder is of an elastic material that serves to maintain the anode and cathode in a face-to-face alignment throughout discharge. This is particularly important in later stages of cell life. As the cell discharges, anode active material is physically moved from the anode to intercalate with the cathode active material. As this mass transfer occurs, the cathode becomes physically larger and the anode smaller. This can lead to misalignment. However, the stack holder prevents such misalignment by maintaining a constrictive force on the electrode assembly throughout discharge.
摘要:
An electrode component for an electrochemical cell or a capacitor is described wherein the electrode is produced by physical vapor depositing an electrode active material onto a substrate to coat the substrate. The thusly produced electrode is useful as a cathode in a primary electrochemical cell and as a cathode and an anode in a secondary cell, and as an electrode in an electrochemical capacitor and an electrolytic capacitor.
摘要:
A deposition process for coating a substrate with an ultrasonically generated aerosol spray of a pseudocapacitive material or a precursor thereof contacted to a substrate heated to a temperature to instantaneously solidify the pseudocapacitive material or convert the precursor to a solidified pseudocapacitive metal compound, is described. The ultrasonic aerosol droplets are much smaller in size than those produced by conventional processes and the heated substrate minimizes the possibility of contamination, thereby providing the present coating having an increased surface area. When the coated substrate is an electrode in a capacitor, a greater surface area results in an increased electrode capacitance.
摘要:
A sealed capacitor, which may be hermetic, having a generally flat, planar geometry, is described. The capacitor includes at least one electrode provided by a metallic substrate having a capacitive material contacted thereto. The coated substrate can provide at least one of the casing side walls itself or, be connected to the side wall. A most preferred form of the capacitor has the conductive substrate provided with the capacitive material formed from an ultrasonically generated aerosol.
摘要:
An anodized pressed valve metal powder pellet is described. The anodized pellet is particularly useful as an anode in an electrolytic capacitor having an improved breakdown voltage. The anodized pellet is formed by periodically holding the pellet at a constant voltage and allowing the current to decay over a period of time, or by turning the formation power supply off altogether during the anodization process. Either way provides an opportunity for heated electrolyte to diffuse from the anodized pellet.
摘要:
An electrode component for an electrochemical cell or a capacitor is described wherein the electrode is produced by physical vapor depositing an electrode active material onto a substrate to coat the substrate. The thusly produced electrode is useful as a cathode in a primary electrochemical cell and as a cathode and an anode in a secondary cell, and as an electrode in an electrochemical capacitor and an electrolytic capacitor.
摘要:
A method for improving the electrical conductivity of a substrate of metal, metal alloy or metal oxide comprising depositing a small or minor amount of metal or metals from Group VIIIA metals (Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt) or from Group IA metals (Cu, Ag, Au) on a substrate of metal, metal alloys and/or metal oxide from Group IVA metals (Ti, Zr, Hf), Group VA metals (V, Nb, Ta), Group VIA metals (Cr, Mo, W) and Al, Mn, Ni and Cu. The native oxide layer of the substrate is changed from electrically insulating to electrically conductive. The step of depositing is carried out by a low temperature arc vapour deposition process. The deposition may be performed on either treated or untreated substrate. The substrate with native oxide layer made electrically conductive is useable in the manufacture of electrodes for devices such as capacitors and batteries.
摘要:
An electrolyte for activating an electrolytic or electrochemical capacitor is described. The electrolyte preferably includes a mixed solvent of water and ethylene glycol having an ammonium salt dissolved therein. An acid such as phosphoric or acetic acid is used to provide a pH of about 3 to 6. The electrolyte is particularly useful for activating a ruthenium oxide/tantalum capacitor having an anode breakdown voltage in the range of 175 to 300 volts.