摘要:
Systems (100) and methods (1400) for operating a Spool Mechanism ("SM"). The methods comprise: transitioning an operational mode of SM from a first operational mode in which a drag torque is not settable to a second operational mode in which the drag torque is settable; selectively mechanically coupling a rewind motor to a spool (612) of SM by engaging a coupler (1014) in response to the SM's transition into the second operational mode; activating the rewind motor (610) such that the rewind motor applies a motor torque having a pre-defined value selected for facilitating a setting of the drag torque to an optimal value; mechanically gradually adjusting an amount of drag resistance applied to the spool by a drag mechanism (1012) ; and discontinuing the mechanical adjustment of the drag resistance when the spool's speed is within a threshold percentage range of a zero resistance speed.
摘要:
Control units (10) for use with unmanned vehicles (12) include an input device (50) that moves in response to a user input, sensors (70) coupled to the input device (50), and a controller (16). The sensors (70) generate outputs related to the movement of the input device (50). The controller (16) determines a target displacement of the unmanned vehicle (12) based on the outputs of the sensors (70), and generates a control input related to the target displacement. The control input, when received by the unmanned vehicle (12), causes the unmanned vehicle (12) to substantially attain the target displacement. The position of the vehicle (12) is thus controlled by directly controlling the displacement of the vehicle (12).
摘要:
Systems ( 100 ) and methods ( 700 ) for increasing a predictability of Telematic Operations ("TOs") of a Teleoperation System ("TS"). The methods involve: measuring an inherent latency of a Communications Link ("CL") of TS which varies unpredictably over at least a first window of time; analyzing the inherent latency, which was previously measured, to determine a first reference value useful for increasing the predictability of the TOs; using the first reference value to select an amount of controlled latency to be added to CL ( 120 ) at each of a plurality of time points ( 502-518 ); and adding the amount of controlled latency to CL at each of the plurality of time points so as to increase the predictability of the TOs. In some scenarios, the amount of controlled latency added at a first time point is different than the amount of controlled latency added at a second time point.
摘要:
A robotic system implements a collision avoidance scheme and includes a first robotic manipulator and a first controller configured to control the first robotic manipulator for movement along a first pre-planned actual path. A second controller is configured to control movement of a second robotic manipulator for movement along a second pre-planned intended path and deviating therefrom to move in a dodging path away from the first pre-planned actual path based upon determining a potential collision with the first robotic manipulator without prior knowledge of the first pre-planned actual path.
摘要:
A shock absorbing disruptor mounting system for a robotic arm (102) includes a rack (112) comprised of a linear guide structure and a carriage (114) which is configured to travel on the linear guide structure. The carriage (114) is selectively movable between a retracted position and an extended position and includes a plurality of wheels (314,614) along its length. Each of the wheels (314,614) has a wheel (314, 614) axis of rotation which is transverse to the direction of the linear guide structure centerline (308,608) to facilitate rotation of the wheels (314,614) on at least a portion of the linear guide structure responsive to the travel.
摘要:
Control units (10) for use with unmanned vehicles (12) include an input device (50) that moves in response to a user input, sensors (70) coupled to the input device (50), and a controller (16). The sensors (70) generate outputs related to the movement of the input device (50). The controller (16) determines a target displacement of the unmanned vehicle (12) based on the outputs of the sensors (70), and generates a control input related to the target displacement. The control input, when received by the unmanned vehicle (12), causes the unmanned vehicle (12) to substantially attain the target displacement. The position of the vehicle (12) is thus controlled by directly controlling the displacement of the vehicle (12).
摘要:
Robotic manipulator arm has an end portion to which one or more end effector appliances can be operably mounted for performing one or more manipulator arm operations. A control system has access to a plurality of different end effector appliance parameter sets which are respectively associated with the plurality of different end effector appliances. A user interface facilitates identification to the control system of one or more of the different end effector appliances which are installed on the manipulator arm. The control system is responsive to the identification to modify a control algorithm.