Light-emitting diode with a thick transparent layer
    1.
    发明公开
    Light-emitting diode with a thick transparent layer 失效
    Lichtemittierende Diode mit einer dicken transparanten Schicht。

    公开(公告)号:EP0551001A1

    公开(公告)日:1993-07-14

    申请号:EP92311706.3

    申请日:1992-12-22

    IPC分类号: H01L33/00

    CPC分类号: H01L33/02 H01L33/0062

    摘要: A light emitting diode (LED) 100, 200, 200' and 300, including a light generation region 103, 203, 203', 303, situated on a light-absorbing substrate 105, 205, 205', 305, also includes a thick transparent layer 102, 204, 204', 302, 304, which ensures that an increased amount of light is emitted from the sides 111, 211, 211', 311, of the LED and only a minimum amount of light is absorbed by the substrate 105, 205, 205', 305. The thickness of the transparent layer 102, 204, 204', 302, 304, is determined as a function of its width and the critical angle at which light is internally reflected within the transparent layer. The thick transparent layer is located either above, below or both above and below the light generation region 103, 203, 203', 303. The thick transparent layer 102, 204, 204', 302, 304, may be made of materials and with fabrication processes different from the light generation region.

    摘要翻译: 包括位于光吸收衬底105,205,205',305上的发光区域103,203,203'和303的发光二极管(LED)100,200,200'和300还包括厚的 透明层102,204,204',302,304,其确保从LED的侧面111,211,211',311发射增加量的光,并且只有最小量的光被衬底吸收 105,205,205',305.透明层102,204,204',302,304的厚度被确定为其宽度和在透明层内部内部反射光的临界角的函数。 厚的透明层位于光产生区域103,203,203',303的上方或下方或两者之上。厚透明层102,204,204',302,304可以由材料制成,并且具有 制造工艺不同于光产生区域。

    High band-gap opto-electronic device and method for making same
    2.
    发明公开
    High band-gap opto-electronic device and method for making same 失效
    Optoelektronische Vorrichtung mit grossem Energiebandabstand und Herstellungsverfahren。

    公开(公告)号:EP0378919A2

    公开(公告)日:1990-07-25

    申请号:EP89313181.3

    申请日:1989-12-18

    IPC分类号: H01L33/00 H01S3/19

    摘要: A high band-gap opto-electronic device is formed by epitaxially growing the device section (150,350,450,550) in a lattice-matched (Al x Ga 1-x ) y In 1-y P-­GaAs system. The band-gap of the epitaxial layer increases with x. Instead of growing the device section (150,350,450,550) directly on the GaAs substrate (100,300,400,500), a layer of (Al x Ga 1-x ) y In 1-y P, (150;320,330,340;420,430;530,540) graded in x and in temperature while maintaining substantially y=0.5, is grown as a transitional layer. The high band-gap device structures include homojunctions, heterojunctions and particularly a separate confinement quantum well heterostructures. Various embodiments of the invention include devices on absorbing substrates and on transparent substrates, and devices incorporating strained-layer superlattices.

    摘要翻译: 通过在晶格匹配(Al x Ga 1-x)y In 1-y P-GaAs系统中外延生长器件部分(150,350,450,550)来形成高带隙光电器件。 外延层的带隙随x增加。 代替直接在GaAs衬底(100,300,400,500)上生长器件部分(150,350,450,550),分级为x和温度的(Al x Ga 1-x)y In 1-y P(150; 320,330,340; 420,430; 530,540)层,同时保持基本上y = 0.5,作为过渡层生长。 高带隙器件结构包括同态,异质结,特别是单独的约束量子阱异质结构。 本发明的各种实施例包括吸收衬底和透明衬底上的器件,以及包含应变层超晶格的器件。

    High band-gap opto-electronic device and method for making same
    3.
    发明公开
    High band-gap opto-electronic device and method for making same 失效
    高带隙光电设备及其制造方法

    公开(公告)号:EP0378919A3

    公开(公告)日:1991-07-31

    申请号:EP89313181.3

    申请日:1989-12-18

    IPC分类号: H01L33/00 H01S3/19

    摘要: A high band-gap opto-electronic device is formed by epitaxially growing the device section (150,350,450,550) in a lattice-matched (Al x Ga 1-x ) y In 1-y P-­GaAs system. The band-gap of the epitaxial layer increases with x. Instead of growing the device section (150,350,450,550) directly on the GaAs substrate (100,300,400,500), a layer of (Al x Ga 1-x ) y In 1-y P, (150;320,330,340;420,430;530,540) graded in x and in temperature while maintaining substantially y=0.5, is grown as a transitional layer. The high band-gap device structures include homojunctions, heterojunctions and particularly a separate confinement quantum well heterostructures. Various embodiments of the invention include devices on absorbing substrates and on transparent substrates, and devices incorporating strained-layer superlattices.