摘要:
Method for processing of material by use of a pulsed laser, comprising generating a series of ultra-short laser pulses (22),directing each laser pulse (22) to the material with defined reference to a respectively assigned processing point (26) of a processing path (25), and focussing each laser pulse (22) so that respective focal points of the focussed laser pulses (22) comprise pre-defined spatial relations to a first surface (2) of the material, wherein each emitted laser pulse (22) effects a respective crack (24) within the material. According to the invention, each laser pulse is shaped regarding its beam profile so that a cross sectional area, which is defined by a cross section of the laser pulse in its focal point orthogonal to its propagation direction, is of asymmetric shape and defines a main extension axis (A) as to its asymmetric extension. One major crack (24) is effected by each laser pulse (22), the major crack (12,24) having a lateral extension basically oriented according to the main extension axis (A) of the respective pulse in the focal point. Furthermore, each laser pulse (22) is emitted so that the orientation of its main extension axis (A) in the focal point corresponds to a pre-defined orientation relative to an orientation of a respective tangent to the processing path (25) at the assigned processing point (26)
摘要:
Method for processing of material by use of a pulsed laser, comprising generating a series of ultra-short laser pulses (22),directing each laser pulse (22) to the material with defined reference to a respectively assigned processing point (26) of a processing path (25), and focussing each laser pulse (22) so that respective focal points of the focussed laser pulses (22) comprise pre-defined spatial relations to a first surface (2) of the material, wherein each emitted laser pulse (22) effects a respective crack (24) within the material. According to the invention, each laser pulse is shaped regarding its beam profile so that a cross sectional area, which is defined by a cross section of the laser pulse in its focal point orthogonal to its propagation direction, is of asymmetric shape and defines a main extension axis (A) as to its asymmetric extension. One major crack (24) is effected by each laser pulse (22), the major crack (12,24) having a lateral extension basically oriented according to the main extension axis (A) of the respective pulse in the focal point. Furthermore, each laser pulse (22) is emitted so that the orientation of its main extension axis (A) in the focal point corresponds to a pre-defined orientation relative to an orientation of a respective tangent to the processing path (25) at the assigned processing point (26)