摘要:
The invention concerns a method for producing a multilayer material based on active lithium, consisting of the deposition of an active lithium film on a protection layer with a sufficient speed to substantially avoid oxidation of the lithium and/ or over a sufficient period such that the adhesion of the lithium occurs upon contact with the protection layer. A multilayer material of the invention presents excellent impedance stability and absence of dendrite formation after the cycling process, when incorporated into an electrochemical battery as anode. The batteries, the anode of which is composed of a multilayer material of the invention are particularly efficient with respect to their coulombic efficiency.
摘要:
A positive electrode material is used to produce a positive electrode of a lithium secondary battery, the positive electrode material being a composite lithium material that includes a first lithium compound and a second lithium compound. For instance, the first lithium compound is in the form of particles and comprises at least one compound selected from a layered lithium compound and a spinel-type lithium compound. Preferably, the second lithium compound comprises at least one compound selected from a lithium-containing phosphate compound and a lithium-containing silicate compound. An amorphous carbon material layer and/or graphene-structured carbon material layer is present on the entire surface of the first lithium compound and the second lithium compound. The second lithium compound forms a thin-film layer on part or the entirety of the carbon material layer present on the surface of the first lithium compound particles.
摘要:
A positive electrode material which can achieve high output, high energy density, and/or a long cycle life required for on-vehicle applications is discussed. The positive electrode material is used to produce a positive electrode of a lithium secondary battery, the positive electrode material being a composite lithium material that includes a first lithium compound and a second lithium compound. For instance, the first lithium compound is in the form of particles and comprises at least one compound selected from a layered lithium compound and a spinel-type lithium compound. Preferably, the second lithium compound comprises at least one compound selected from a lithium-containing phosphate compound and a lithium-containing silicate compound. An amorphous carbon material layer and/or graphene-structured carbon material layer is present on the entire surface of the first lithium compound and the second lithium compound. The second lithium compound forms a thin-film layer on part or the entirety of the carbon material layer present on the surface of the first lithium compound particles.